Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Nonlinear Dynamical Processes Described by the Traveling Wave Reduction of the Generalized Kuramoto–Sivashinsky Equation

https://doi.org/10.56304/S2304487X20020091

Abstract

   The generalized Kuramoto–Sivashinsky equation is used to describe a lot of nonlinear physical processes. In this work, dynamical regimes described by the traveling wave reduction of the generalized Kuramoto–Sivashinsky equation are examined. The main goal of this work is to study how the dispersive term suppresses chaotic regimes in the system. The traveling wave reduction of the Kuramoto–Sivashinsky equation is written in the normal form. The divergence of the vector field this system has been calculated. The parameters for which the studied system is dissipative have been determined. The bifurcation diagram is plotted for three different nonlinearity degrees of the generalized Kuramoto–Sivashinsky equation. The dispersion term coefficient is chosen as the bifurcation parameter. The largest Lyapunov exponent is plotted as a function of the dispersion parameter for the three studied cases. The Benettin algorithm is employed to compute largest Lyapunov exponents. It has been found that a chaotic regime is observed in the system at some values of the dispersion parameter. Routes to chaos are described. Phase portraits for some of the dynamical regimes are presented.

About the Authors

S. F. Lavrova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow



N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow



References

1. Kuramoto Yoshiki, Toshio Tsuzuki. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium // Progress of theoretical physics. 1976. V. 55. № 2. P. 356–369.

2. Sivashinsky G. I. Nonlinear analysis of hydrodynamic instability in laminar flames – I. Derivation of basic equations // Acta astronautica. 1977. V. 4. P. 1177–1206.

3. Michelson D. M., Sivashinsky G. I. Nonlinear analysis of hydrodynamic instability in laminar flames – II. Numerical experiments // Acta astronautica. 1977. V. 4. № 11–12. P. 1207–1221.

4. Sivashinsky G. I. On flame propagation under conditions of stoichiometry // SIAM Journal on Applied Mathematics. 1980. V. 39. № 1. P. 67–82.

5. Tsvelodub O. Yu. Stationary travelling waves on a film flowing down an inclined plane // Fluid Dynamics. 1980. V. 15. № 4. P. 591–594.

6. Shlang T., Sivashinsky G. I. Irregular flow of a liquid film down a vertical column // Journal de Physique. 1982. V. 43. № 3. P. 459–466.

7. Kuramoto Yoshiki. Diffusion-induced chaos in reaction systems // Progress of Theoretical Physics Supplement. 1978. V. 64. P. 346–367.

8. Sivashinsky G. I. Large cells in nonlinear Marangoni convection // Physica D: Nonlinear Phenomena. 1982. V. 4. №. 2. P. 227–235.

9. Kudryashov N. A. Exact solutions of the generalized Kuramoto-Sivashinsky equation // Physics Letters A. 1990. V. 147. № 5–6. P. 287–291.

10. Michelson D. Steady solutions of the Kuramoto-Sivashinsky equation // Physica D: Nonlinear Phenomena. 1986. V. 19. № 1. P. 89–111.

11. Kudryashov N. A. Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation. 2011. arXiv preprint arXiv: 1112.5707.

12. Conte R., Micheline M. Painleve analysis and Backlund transformation in the Kuramoto-Sivashinsky equation // Journal of Physics A: Mathematical and General. 1989. V. 22. № 2. P. 169.

13. Hyman J. M., Nicolaenko B. The Kuramoto-Sivashinsky equation: a bridge between PDE’s and dynamical systems // Physica D: Nonlinear Phenomena. 1986. V. 18. № 1–3. P. 113–126.

14. Nicolaenko B., Scheurer B., Temam R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors // Physica D: Nonlinear Phenomena. 1985. V. 16. № 2. P. 155–183.

15. Manneville P. Liapounov exponents for the Kuramoto-Sivashinsky model. Macroscopic Modelling of Turbulent Flows. Springer, Berlin, Heidelberg, 1985. P. 319–326.

16. Brummitt Ch. D., Sprott J. C. A search for the simplest chaotic partial differential equation // Physics Letters A. 2009. V. 373. № 31. P. 2717–2721.

17. Kudryashov N. A., Sinel’shchikov D. I., Chernyavsky I. L. Nonlinear evolution equations for description of perturbations in a viscoelastic tube // Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]. 2008. V. 4. № 1. P. 69–86.

18. Benettin G. et al. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory // Meccanica. 1980. V. 15. № 1. P. 9–20.

19. Sprott J. C. Elegant chaos: algebraically simple chaotic flows. World Scientific, 2010.

20. Lakshmanan Muthusamy, Shanmuganathan Rajaseekar. Nonlinear dynamics: integrability, chaos and patterns. Springer Science & Business Media, 2012.


Review

For citations:


Lavrova S.F., Kudryashov N.A. Nonlinear Dynamical Processes Described by the Traveling Wave Reduction of the Generalized Kuramoto–Sivashinsky Equation. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(2):129-138. (In Russ.) https://doi.org/10.56304/S2304487X20020091

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)