MATHEMATICAL MODEL WITH DELAY FOR DYNAMIC CONTROL SYSTEMS
https://doi.org/10.26583/vestnik.2022.9
Abstract
The purpose of this work is to study the analytical solutions of a dynamic model with a constant delay. Models of this type are used in biomedical research, for example, in the study of the spread of infections, the distribution of drugs in the body. A modification of the multifractional absorption model (MFA model) including a delay is proposed, and its analytical solution is obtained. It allows you to adequately model the distribution in the blood of medicinal substances characterized by a non-standard mechanism of absorption of the dosage form upon oral administration. According to the literature data on the pharmacokinetics of the drug sumatriptan in volunteers after oral administration of 50 mg of the drug, the distribution of the substance in the blood was calculated using the proposed MFA model with a delay. The model made it possible to adequately describe the distribution, which is characterized by two peaks in the concentration of the drug in the blood.
About the Authors
D. E. IvanovRussian Federation
O. V. Polekhina
Russian Federation
T. N. Shvetsova-Shilovskaya
Russian Federation
E. N. Morozova
Russian Federation
E. V. Kazarezova
Russian Federation
References
1. Dolgiy Yu.F., Surkov P.G. Matematicheskiyå modeli dinamicheskikh sistem s zapazdyvaniyåm: ucheb. posobiyå [Mathematical models of dynamical systems with delay: textbook. allowance]. Ekaterinburg: Izd-vo Ural. un-ta Publ., 2012.
2. Gromov Yu.Yu., Zemskoy N.A., Lagutin A.V., Ivanova O.G., Tyutyunnik V.M. Sistemy avtomaticheskogo upravleniya s zapazdyvaniyåm: ucheb. posobiyå [Automatic control systems with delay: textbook. allowance]. Tambov: Izd-vo Tamb. gos. tekhn. un-ta Publ., 2007.
3. Bobtsov A.A., Pyrkin A.A. Adaptivnoyå i robastnoyå upravleniyå s kompensatsiyåy neopredelennostey: uchebnoyå posobiyå [Adaptive and Robust Control with Uncertainty Compensation: Tutorial]. SPb: NIU ITMO Publ., 2013.
4. Guretskiy Kh. Analiz i sintez sistem upravleniya s zapazdyvaniyåm [Analysis and synthesis of control systems with delay]. M.: Mashinostroyåniyå, 1973.
5. Plotnikov S.A., Semenov D.M., Fradkov A.L. Matematicheskoyå modelirovaniyå sistem upravleniya [Mathematical modeling of control systems]. SPb: Universitet ITMO Publ., 2021.
6. Kheyl Dzh. Teoriya funktsionalno-differentsial¬nykh uravneniy [Theory of functional differential equations]. M.: Mir Publ., 1984.
7. Bellman R., Kuk K. Differentsialno-raznostnyyå uravneniya. [Differential-difference equations]. Moscow, Mir Publ., 1967.
8. Myshkis A.D. Lineynyyå differentsialnyyå uravne¬niya s zapazdyvayushchim argumentum [Linear differential equations with retarded argument]. M.: Nauka Publ., 1972.
9. Elsgolts L.E., Norkin. S.B. Vvedeniyå v teoriyu differentsialnykh uravneniy s otklonyayushchimsya argumentum [Introduction to the theory of differential equations with deviating argument]. M.: Nauka Publ., 1971.
10. Shampayn L.F., Gladvel I., Tompson S. Resheniyå obyknovennykh differentsialnykh uravneniy s ispolzovaniyåm MATLAB [Solving Ordinary Differential Equations Using MATLAB]. SPb: Lan Publ., 2009.
11. Rabotnov Yu.N. Mekhanika deformiruyåmogo tverdogo tela [Solid Mechanics]. M.: Nauka Publ., 1988.
12. Khidirov B.N. Izbrannyyå raboty po matematicheskomu modelirovaniyu regulyatoriki zhivykh sistem [Selected works on mathematical modeling of the regulators of living systems]. Izhevsk, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovaniy, 2014.
13. Riznichenko G.Yu. Matematicheskoyå modelirovaniyå biologicheskikh protsessov. Modeli v biofizike i ekologii [Mathematical modeling of biological processes. Models in biophysics and ecology]. M.: Yurayt Publ., 2016.
14. Glagolev M.V., Sabrekov A.F., Goncharov V.M. Differentsialnyyå uravneniya s zapazdyvaniyåm kak matematicheskiyå modeli dinamiki populyatsiy [Mathematical models in immunology. Computational methods and experiments]. Dinamika okruzhayushchey sredy i globalnyyå izmeneniya klimata. 2018. Vol. 9. No. 2. Р. 40–63.
15. Marchuk G.I. Matematicheskiyå modeli v immunologii. Vychislitelnyyå metody i eksperimenty [Mathematical models in immunology. Computational methods and experiments]. M.: Nauka Publ., 1991.
16. Myurrey D. Matematicheskaya biologiya. T. 1.: Vvedeniyå [Mathematical biology. Volume 1. Introduction]. Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovaniy. 2009.
17. Myurrey D. Matematicheskaya biologiya. T. 2: Prostranstvennyyå modeli i ikh prilozheniya v biomeditsine [Mathematical biology. Volume 2. Spatial models and their applications in biomedicine]. Izhevsk, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovaniy. 2011.
18. Solovyåva O.E., Markhasin V.S., Katsnelson JI.B., Sulman T.B., Vasilyåva A.D. Matematicheskoyå modelirovaniyå zhivykh sistem: ucheb. posobiyå / Pod obshch. red. O.E. Solovyåvoy. [Mathematical modeling of living systems: textbook. allowance / under total. ed. O.E. Solovieva. Ministry of Education and Science Ros. Federation. Ural. feder. university]. Ekaterinburg: Izd-vo Ural. un-ta. 2013.
19. Baker C.T.H., Bocharov G.A., Paul C.A.H., Rihan F.A. Modelling and analysis of time-lags in some basic patterns of cell proliferation. J. Math. Biol. 1998. Vol. 37. Р. 341–371.
20. Lee Joomi, Mi-sun Lim, Sook Jin Seong, et al. Population pharmacokinetic analysis of the multiple peaks phenomenon in sumatriptan. Transl Clin Pharmacol. 2015. Vol. 23. No. 2. Р. 66–74.
21. Strebulyayåv S.N., Vorobyåv D.V. Parametricheskiyå kolebaniya v lineynykh sistemakh s zapazdyvaniyåm: uchebno-metodicheskoyå posobiyå [Parametric Oscillations in Linear Systems with Delay: Study Guide]. Nizhniy Novgorod: Nizhegorodskiy gosuniversitet, 2020.
22. Shilin A.A., Bukreyåv V.G., Koykov K.I. Matematicheskaya model nelineynoy teploobmennoy sistemy s zapazdyvaniyåm [sb. trudov: XIX Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Sovremennyyå tekhnika i tekhnologii». Sektsiya 10: Teploenergetikab]. 2013. Р. 221–222.
23. Bischoff K.B., Dedrick R.L., Zaharko D.S., Longstreth J.A. Methotrexate pharmacokinetics. J. Pharm.Sci. 1971. Vol. 60. No. 8. Р. 1128–1133.
24. Melchor Alpízar-Salazar, Miguel Alejandro Trejo-Rangel, José de Jesús Reséndiz-Rojas, et. al. A modified compartmental pharmacokinetic model of enterohepatic circulation for simvastatin in healthy Mexican subjects. A pilot study. Journal of Pharmacy and Pharmacology Research. 2020. Vol. 4(4). Р. 103–115.
25. Gerner B., Scherf-Clavel O. Physiologically based pharmacokinetic modelling of cabozantinib to simulate enterohepatic recirculation, drug–drug interaction with rifampin and liver impairment. Pharmaceutics. 2021. Vol. 13. Р. 773. https://doi.org/10.3390/ pharmaceutics13060778.
26. Ibarra M., Troconiz I.F., Fagiolino P. Enteric reabsorption processes and their impact on drug pharmacokinetics.Scientific Reports. 2021. Vol. 11. https://doi.org/10.1038/s41598-021-85174-w.
27. Kim T.H., Shin S., Landersdorfer C.B., et al. Population pharmacokinetic modeling of the enterohepatic recirculation of fimasartan in rats, dogs, and humans. The AAPS Journal. 2015. Vol. 17. No. 5. Р. 1210–1223, doi: 10.1208/s12248-015-9764-2.
28. Funaki T. Enterohepatic circulation model for population pharmacokinetic analysis. J. Pharm. Pharmacol. 1999. Vol. 51. Р. 1143–1148.
29. Steimer J.L., Plusquellec Y., Guillaume A., et al. A time‐lag model for pharmacokinetics of drugs subject to enterohepatic circulation. Journal of Pharmaceutical Sciences. 1982. Vol. 71. Р. 297–302.
30. Kiryanov D.V. Mathcad 15 / Mathcad Prime 1.0. SPb: BKhV-Peterburg, 2012.
31. Takamatsu N., Welage L.S., Hayashi Y., et.al. Variability in cimetidine absorbtion and plasma double peaks following oral administration in the fasted state in humans: correlation with antral gastric motility. Eur. J. Pharmaceutics and Biopharmaceutics. 2002. Vol. 53. Р. 37–47.
32. Murata K., Noda K., Kohno K., et. al. Pharmacokinetic analysis of concentration data of drugs with irregular absorption profiles using multi-fraction absorption models. J. Pharm. Sci, 1987. Vol. 76. Р. 109–113.
33. Bergstrom R.F., Kay D.R., Harkcom T.M., Wagner J.G. Penicillamine kinetics in normal subjects. Clin. Pharmacol. Ther. 1981. Vol. 30. Р. 404–413.
34. Lui C.Y., Oberle R., Fleisher D., Amidon G.L. Application of a radiotelemetric system to evaluate the performance of enteric coated and plain aspirin tablets. J. Pharm. Sci. 1986. Vol. 75. Р. 469–474.
35. Hammarlund M.M., Paalzow L.K., Odlind B. Pharmacokinetics of furosemide in man after intravenous and oral administration. Application of moment analysis. Eur. J. Clin. Pharmacol. 1984. Vol. 26. Р. 197–207.
36. Clements J.A., Heading R.C., Nimmo W.S., Prescott L.F. Kinetics of acetaminophen absorption and gastric emptying in man. Clin. Pharmacol. Ther. 1978. Vol. 24. Р. 420–431.
37. Murata K., Tagawa K., Noda K., Kohno K., Samejima M. Pharmacokinetic analysis of single- or multiple-dose plasma drug concentration data with microcomputer using multi-fraction absorption models. // J. Pharm. Sci. 1989. Vol. 78. Р. 154–159.
38. Riad L.E., Chan K.K.H., Wagner W.E., Sawchuk R.J. Simultaneous firs- and zero-order absorption of carbamazepine tablets in humans. J. Pharm. Sci. 1986. Vol. 75. P. 897–900.
39. Imbimo B.P., Daniotti S., Vidi A., et al. Discontinuous oral absorption of cimetropium bromide, a new antispasmodic drug. J. Pharm. Sci. 1986. Vol. 75. Р. 680–684.
40. Polekhina O.V., Obraztsov N.V. Osobennosti matematicheskogo modelirovaniya farmakokinetiki pri peroralnom priyåme lekarstvennykh sredstv [Features of mathematical modeling of pharmacokinetics in oral administration of drugs]. Materialy nauchno-prakticheskoy konferentsii «Aktualnyyå voprosy promyshlennoy toksikologii» [Materials of the scientific-practical conference «Topical issues of industrial toxicology»]. Moskva, 26–27 noyabrya, 2014. M.: Izdatelstvo «Pero», 2014. Р. 223–234.
41. Ide T., Sasaki Т., Maeda K., et al. Quantitative population pharmacokinetic analysis of pravastatin using an enterohepatic circulation model combined with pharmacogenomic information on SLCO1B1 and ABCC2 polymorphisms. The Journal of Clinical Pharmacology. 2009. Vol. 49(11). Р. 1309–1317.
42. Jain L., Woo S., Gardner E.R., Dahut W.L., Kohn E.C., Kummar S., et al. Population pharmacokinetic analysis of sorafenib in patients with solid tumours. British journal of clinical pharmacology. 2011. No. 72(2). Р. 294–305.
43. Ibarra M., Vazquez M., Fagiolino P. Population pharmacokinetic model to analyze nevirapine multiple-peaks profile after a single oral dose. Journal of pharmacokinetics and pharmacodynamics. 2014. Vol. 41(4). Р. 363–373.
Supplementary files
Review
For citations:
Ivanov D.E., Polekhina O.V., Shvetsova-Shilovskaya T.N., Morozova E.N., Kazarezova E.V. MATHEMATICAL MODEL WITH DELAY FOR DYNAMIC CONTROL SYSTEMS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(5):366-378. (In Russ.) https://doi.org/10.26583/vestnik.2022.9