Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Приближенные решения SIR-модели для описания коронавируса

https://doi.org/10.1134/S2304487X20050089

Аннотация

Об авторах

Н. А. Кудряшов
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



М. А. Чмыхов
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



Список литературы

1. Kermack W. O., McKendrick A. G. A Contribution to the Mathematical Theory of Epidemics // Proc. Roy. Soc. London Ser. A. 1927. V. 115. P. 700–721.

2. Kudryashov N. A., Chmykhov M. A., Vigdorowitsch M. V. Analytical features of the SIR model and theier application to COVID-19 // Applied Mathematical Modeling. 2021. V. 90. P. 466–473.

3. Chladni Z., Kopfov J., Rachinskii D., Rouf S. C. Global dynamics of SIR model with switched transmission rate // J. Math. Biol. 2020. V. 80. P. 1209–1233. doi: 10.1007/s00285-019-01460-2

4. Barlow N. S., Weinstein S. J. Accurate closed-form solution of the SIR epidemic model // Physica D. 2020. V. 408. P. 132540. doi: 10.1016/j.physd.2020.132540

5. Harko T., Lobo F. S. N., Mak M. K. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates // Applied Mathematics and Computation. 2014. V. 236. P. 184–194. doi: 10.1016/j.amc.2014.03.030

6. Corless R. M., Gonnet G. H., Hare D. E. G., Jefrey D. J., Knuth D. E. On the Lambert W Function // Advances in Computational Mathematics. 1996. V. 5. P. 329–359.

7. a) COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, 2020. [Online]. Available: https://github.com/CSSEGISandData/COVID-19,folder COVID-19/csse-covid-19-data/cssecovid-19-time-series/. [Accessed: 22-May-2020]; b) Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20 (5): 533–534. doi: 10.1016/S1473-3099(20)30120-1.

8. CORONAVIRUS today Monitoring the spread of COVID-19 in the world, 2020. [Online]. Available: https://www.who.int/ru/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMIi_CZuOCa_QIVBKOyCh3x5wRMEAAYASAAEgLYVfD_BwE/. [Accessed: 29-May-2020] (in Russian).

9. Kudryashov N. A. One method for finding exact solutions of nonlinear differential equations // Commun. Nonlinear Sci. Numer. Simulat. 2012. P. 2248–2253.

10. Kudryashov N. A. Polynomials in logistics function and solitary waves of nonlinear differential equations // Appl. Math. Comput. 2013. P. 9245–9253.

11. Kudryashov N. A. Logistic function as solution of many nonlinear differential equations // Appl. Math. Model. 2015. V. 18. P. 5733–5742.


Рецензия

Для цитирования:


Кудряшов Н.А., Чмыхов М.А. Приближенные решения SIR-модели для описания коронавируса. Вестник НИЯУ МИФИ. 2020;9(5):404-411. https://doi.org/10.1134/S2304487X20050089

For citation:


Kudryashov N.A., Chmykhov M.A. Approximate Solutions of the SIR-Model for Describing the Coronavirus. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(5):404-411. (In Russ.) https://doi.org/10.1134/S2304487X20050089

Просмотров: 243


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)