Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Exact Solution of Fourth Order Differential Equations for Description of Optical Pulses

https://doi.org/10.1134/S2304487X20050120

Abstract

   The nonlinear fourth-order partial differential equation is considered with power and nonlocal nonlinearities. This equation is used to describe the propagation of pulses in an optical fiber. Since the Cauchy problem for this equation cannot be solved by the inverse scattering transform method, the reduction of this partial differential equation to an ordinary differential equation (ODE) is considered. To construct the reduction, the traveling wave variables are used. Using a traveling wave solution, a system of ODEs is obtained composed of the imaginary and real parts of the equation. The Painlevé test is performed to check the integrability of this reduction. It is established that the constructed system of ODEs does not have the Painlevé property. Using the Fuchs indices obtained during the second step of the Painlevé test, the values of traveling wave velocity is found at which the model is simplified. In this case, only one four-order equation remains in the system of ODEs, and the simplest equation method is used to find exact solutions of it. As a result, solutions expressed in terms of the Jacobi elliptic function and the exponential function are constructed. The found exact solutions have two arbitrary constants and have the form of periodic and solitary waves.

About the Authors

D. V. Safonova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Biswas A. 1-soliton solution of the generalized Radhakrishnan–Kundu–Laksmanan equation // Physics Letters A. 2009. V. 373. P. 2546–2548.

2. Kudryashov N. A., Safonova D. V., Biswas A. Painlevé analysis and solution to the traveling wave reduction of Radhakrishnan–Kundu–Lakshmanan equation // Regular and Chaotic Dynamics. 2019. V. 24. № 6. P. 607–614.

3. Biswas A. Chirp-free bright optical soliton perturbation with Chen–Lee–Liu equation by traveling wave hypothesis and semi-inverse variational principle // Optik. 2018. V. 172. P. 772–776.

4. Kudryashov N. A. General solution of the traveling wave reduction for the perturbed Chen–Lee–Liu equation // Optik. 2019. V. 186. P. 339–349.

5. Kundu A., Mukherjee A. Novel integrable higher-dimensional nonlinear Schrödinger equation: properties, solutions, applications, 2013.

6. Kudryashov N. A. General solution of traveling wave reduction for the Kundu–Mukherjee–Naskar equation // Optik. 2019. V. 186. P. 22–27.

7. Kudryashov N. A. Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic-quintic nonlinearity // Optik. 2019. V. 188. P. 27–35.

8. Kudryashov N. A. First integral and general solution of traveling wave reduction for the Triki–Biswas equation // Optik. 2019. V. 185. P. 275–281.

9. Kudryashov N. A. Traveling wave solutions of the generalized nonlinear Schrödinger equation with antyi-cubic nonlinearity // Optik. 2019. V. 185. P. 665–671.

10. Kudryashov N. A. Construction of nonlinear equations for description of propagation pulses in optical fiber // Optik. 2019. V. 192. P. 162964.

11. Bansal A., Biswas A., Zhou Q., Arshed S., Alzahrani A. K., Belic M. R. Optical solitons with Chen–Lee–Liu equation by Lie symmetry // Optik. 2020. V. 384. P. 126202.

12. Yıldırım Y., Biswas A., Ekici M., Triki H., Gonzalez-Gaxiola O., Alzahrani A. K., Belic M. R. Optical solitons in birefringent fibers for Radhakrishnan–Kundu–Lakshmanan equation with five prolific integration norms // Optik. 2020. V. 208. P. 164550.

13. Kohl R. W., Biswas A., Zhou Q., Ekici M., Alzahrani A. K., Belic M. R. Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle // Optik. 2020. V. 135. P. 109765.

14. Kudryashov N. A. Method for finding highly dispersive optical solitons of nonlinear differential equations // Optik. 2020. V. 206. P. 163550.

15. Kudryashov N. A. Optical solitons of mathematical model with arbitrary refractive index // Optik. 2020. V. 224. P. 165391.

16. Kudryashov N. A. First integrals and general solutions of the Biswas–Milovic equation // Optik. 2020. P. 164490.

17. Kudryashov N. A. First integrals and general solution of the Fokas–Lenells equation // Optik. 2019. V. 195. P. 163135.

18. Kudryashov N. A., Safonova D. V. Nonautonomous first integrals and general solutions of the KdV–Burgers and mKdV–Burgers equations with the source // Mathematical Methods in the Applied Sciences. 2019. V. 42. № 13. P. 4627–4636.

19. Kudryashov N. A., Safonova D. V., Tochniye resheniya uravneniya Kortewega–de Vriesa–Burgersa istochnikom. (Exact Solutions of the Korteweg–de Vries–Burgers Equation with a Source), Vestnik Natsional’nogo issledovatel’skogo yadernogo universiteta “MIFI”, 2019, vol. 8, no. 2, pp. 124–131 (in Russian).

20. Ablowitz M. J., Clarkson P. A. Solitons nonlinear evolution equations and inverse scattering. Cambridge University Press, 1991.

21. Ablowitz M. J., Segur H. Exact linearization of a painleve transcendent // Phys. Rev. Lett. 1977. V. 38. P. 1103-1106.

22. Ablowitz M. J., Ramani A., Segur H. A connection between nonlinear evolution equations and ordinary differential equations of p-type. I // J. Math. Phys. 1980. V. 21. P. 715–721.

23. Kudryashov N. A., Safonova D. V., Tochniye resheniya nelineynogo differencialnogo uravneniya dlya opisaniya opticheskih impulsov s nelineynostyu tretey i pyatoy stepeni (Exact Solutions of a Nonlinear Differential Equation with Third and Fifth Degree Nonlinearities for Description of Optical Pulses), Vestnik Natsional’nogo issledovatel’skogo yadernogo universiteta “MIFI”, 2020, vol. 9, no. 1, pp. 25–31 (in Russian).

24. Kudryashov N. A. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos Soliton Fractals. 2005. V. 24. P. 1217–1231.

25. Kudryashov N. A. Exact solitary waves of the Fisher equations // Physics Letters A. 2005. V. 342. P. 99–106.


Review

For citations:


Safonova D.V., Kudryashov N.A. Exact Solution of Fourth Order Differential Equations for Description of Optical Pulses. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(5):412-419. (In Russ.) https://doi.org/10.1134/S2304487X20050120

Views: 94


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)