Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Применение ограниченной машины Больцмана для решения задачи авторского профилирования русскоязычных текстов

https://doi.org/10.1134/S2304487X20050144

Об авторах

А. Г. Сбоев
НИЦ “Курчатовский институт”; Национальный исследовательский ядерный университет “МИФИ”
Россия

123182

115409

Москва



Р. Б. Рыбка
НИЦ “Курчатовский институт”
Россия

123182

Москва



Ю. А. Давыдов
НИЦ “Курчатовский институт”
Россия

123182

Москва



А. А. Селиванов
НИЦ “Курчатовский институт”
Россия

123182

Москва



Список литературы

1. Goodfellow I., Yoshua Bengio, Courville A. Deep Learning. MIT Press, 2016.

2. Hinton G. E., Osindero S., Yee Whye Teh. A fast learning algorithm for deep belief nets // Neural Computation. 2006. V. 18. P. 1527–1554.

3. Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle. Greedy layer-wise training of deep networks / In: Advances in Neural Information Processing Systems 19 (NIPS’06), Ed. by B. Schölkopf, J. Platt, T. Hoffman. 2007. MIT Press, 2007. P. 153–160.

4. Welling M., Sutton Ch. Learning in Markov random fields with contrastive free energies / In: Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (AISTATS’05), 2005. P. 397–404.

5. Salakhutdinov R., Hinton G. E. Semantic hashing / In: Proceedings of the 2007 Workshop on Information Retrieval and applications of Graphical Models (SIGIR’07), Amsterdam: Elsevier, 2007.

6. Mnih A., Hinton G. E. Three new graphical models for statistical language modelling / In: Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML’07). Ed. by Zoubin Ghahramani, ACM, 2007. P. 641–648.

7. Larochelle H. et al. Learning Algorithms for the Classification Restricted Boltzmann Machine // J. Mach. Learn. Res. 2012. V. 13. P. 643–669.

8. Antkiewicz M., Kuta Marcin, Kitowski J. Author Profiling with Classification Restricted Boltzmann Machines. 2017.

9. Sboev A., Litvinova T., Gudovskikh D., Rybka R., Moloshnikov I. Machine Learning Models of Text Categorization by Author Gender Using Topic-independent Features // Procedia Computer Science, 2016. V. 101. P. 135–142.

10. Pedregosa et al. Scikit-learn: Machine Learning in Python. JMLR, 2011. V. 12. P. 2825–2830.

11. Trang T. Le, Weixuan Fu, Jason H. Moore. Scaling treebased automated machine learning to biomedical big data with a feature set selector // Bioinformatics. 2020. V. 36. № 1. P. 250–256.

12. Bergstra J., Yamins D., Cox D. D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures / To appear in Proc. of the 30th International Conference on Machine Learning (ICML 2013). 2013.

13. Sboev A., Gudovskikh D., Moloshnikov I., Rybka R. A gender identification of text author in mixture of Russian multi-genre texts with distortions on base of data-driven approach using machine learning models // AIP Conference Proceedings. 2019. V. 2116. P. 270006. doi: 10.1063/1.5114280

14. Sboev A., Rybka R., Moloshnikov I., Gudovskikh D., Litvinova T. To the question of data-driven identification of author’s age for Russian texts with age deceptions using machine learning // Journal of Physics: Conf. Ser. 2019. V. 1205. P. 012049.


Рецензия

Для цитирования:


Сбоев А.Г., Рыбка Р.Б., Давыдов Ю.А., Селиванов А.А. Применение ограниченной машины Больцмана для решения задачи авторского профилирования русскоязычных текстов. Вестник НИЯУ МИФИ. 2020;9(5):475-480. https://doi.org/10.1134/S2304487X20050144

For citation:


Sboev A.G., Rybka R.B., Davydov Yu.A., Selivanov A.A. Application of Restricted Boltzmann Machines to Solve the Problem of Author’s Profiling of Russian Texts. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(5):475-480. (In Russ.) https://doi.org/10.1134/S2304487X20050144

Просмотров: 130


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)