Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

To the Thermodynamic Characteristics of Nanosystems: Bulk (Vacancy-Related) Effect

https://doi.org/10.1134/S2304487X20060115

Abstract

   The problem of the reduction of thermodynamic potentials of a nanomaterial compared to a macromaterial because of a dimensional vacancy-related effect in an ensemble of nanoparticles has been solved. Various particle size distributions such as uniform, linear, exponential, and normal (Gaussian) distribution functions have been considered. The results have been applied to nanostructures based on indium and gold. The reduction of thermodynamic potentials for nanostructures with metallic particles compared to that for massive crystals has been shown to be more considerable for metals with a lower melting temperature since it makes the vacancy concentration higher. The larger the particles in an ensemble, the smaller the reduction of thermodynamic potentials in its absolute value, which is a direct consequence of a greater resemblance between the nanostructure and massive crystal of the same nature. Distribution functions corresponding to an increased number of ultrasmall particles and a decreased number of relatively large particles provide a greater reduction of thermodynamic potentials. It has been shown that the exponential distribution and linearly decreasing functions ensure the maximum and minimum reduction in its absolute value, respectively. The dispersion of a material in the form of nanoparticles is capable of promoting the chemical transformations with the energy barrier (per particle at 300 K) of ~10–18 and 10–8 J for indium and gold, respectively.

About the Authors

V. I. Vigdorovich
All-Russian Scientific Research Institute for the Use of Machinery and Oil Products in Agriculture
Russian Federation

392022

Tambov



M. V. Vigdorowitsch
Angara GmbH
Germany

40599

Düsseldorf



L. E. Tsygankova
All-Russian Scientific Research Institute for the Use of Machinery and Oil Products in Agriculture; Tambov State University
Russian Federation

392022

392000

Tambov



References

1. IAAM. Advanced Materials Laureate 2019: Professor Herbert Gleiter – one of the highest awards in the field of Advanced Materials (press-release). Ulrika, Sweden, 28. 11. 2019. https://mb.cision.com/Main/17860/2975167/1152033.pdf.

2. Nordmann A. Invisible Origins of Nanotechnology: Herbert Gleiter // Materials Science, and Questions of Prestige. Perspectives on Science. 2009. V. 17. № 2. P. 123–143.

3. Gleiter H., Marquardt P. Nanokristalline Strukturen – ein Weg zu neuen Materialien? // Z. Metallkunde. 1984. B. 75. № 4. S. 263–267.

4. Birringer R., Gleiter H., Klein H.-P., Marquardt P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? // Physics Letters A. 1984. V. 102. № 8. P. 365–369.

5. B. Sreznevsky. Ob isparenii chastits [About evaporation of liquids]. Journal of Russian Physico-Chemical Society. Part Physics. 1883. V. 15. P. 39. (in Russian)

6. Helmholtz R. Untersuchungen über Dämpfe und Nebel, besonders über solche von Lösungen // Ann. Phys. 1886. B. 27. № 5. P. 508–515.

7. Houllevigue L. Sur la chaleur de vaporisation et les dimensions moléculaires // J. Phys. Theor. Appl. 1896. V. 5. № 1. P. 159–163.

8. Strebejko P. E. Dissertation…doctor of sci. O vliyanii izmelcheniya na temperaturu perekhoda [About the milling effect on transition temperature]. Moscow, Institute of General and Inorganic Chemistry. USSR. 1939. 257 p.

9. Scherbakov L. M. O poverkhnostnom natyazhenii kapel malogo razmera [About the surface tension of small size droplets]. Colloid Journal. 1952. V. 14. No. 5. P. 379–382. (in Russian)

10. Scherbakov L. M., Rykov V. I. O teplote ispareniya malykh kapel [About evaporation heat of small droplets]. Colloid Journal. 1961. V. 23. No. 2. P. 221–227. (in Russian)

11. Scherbakov L. M. O statisticheskoj otsenke izbytochnoy svobodnoy energii malykh obyektov v termodinamike mikrogeterogennykh sistem [About statistical estimate of redundant free energy of small objects in thermodynamics of micro-heterogeneous systems]. Doklady AN SSSR. 1966. V. 168. No. 2. P. 388–391. (in Russian)

12. Scherbakov L. M. O poverkhnostnom natyazhenii tverdogo tela po granitse razdela s sobstvennym rasplavom [About surface tension of a solid at its interface with own melt]. Colloid Journal. 1961. V. 23. No. 2. P. 215–220. (in Russian)

13. Rusanov A. I. Termodinamika poverkhnostnykh yavleniy [Thermodynamics of surface phenomena]. Leningrad, Khimiya. 1960.

14. Vigdorovich V. I., Tsygankova L. E. Fiziko-khimiya nanostrukturirovannykh materialov [Physico-chemistry of nano-structured materials]. Tambov. R. V. Pershin’s publishing house. 2012.

15. Vigdorovich V. I., Tsygankova L. E., Shel N. V., Bernatsky P. N. Teoreticheskie i prikladnye voprosy nanotekhnologiy (sovremennoe sostoyanie i problemy) [Theoretical and applied issues of nano-technologies (actual state and problems)]. Tambov. R. V. Pershin’s publishing house. 2016.

16. Eremin V. V., Plutenko A. D. Nanotekhnologicheskoye obrazovaniye: problemy i perspektivy [Nanotechnological education: problems and perspectives]. In: Sovremennye tendentsii razvitiya khimicheskogo obrayovaniya: fundamentalnost i kachestvo [Modern tendencies in development of chemical education: fundamentality and quality]. Ed. V. V. Lunin. Moscow, Moscow State University, 2009. P. 141–153.

17. Tretyakov Yu. D. Self-organisation processes in chemistry of materials. Russian Chemical Reviews. 2003. V. 72. No. 8. P. 651–679. (in Russian)

18. Tretyakov Yu. D., Gudilin E. A. Osnovnye napravleniya fundamental'nyh i orientirovannyh issledovanij v oblasti nanomaterialov [Key trends in basic and application-oriented research on nanomaterials]. Russian Chemical Reviews. 2009. V. 72. No. 9. P. 801–820. (in Russian)

19. Morokhov I. D., Chizhik S. P., Gladkikh N. T., Grigorjeva L. K., Stepanova S. V. Razmernyy vakansionnyy effect [Dimensional vacancy-related effect]. Doklady AN SSSR. 1979. V. 248. No. 3. P. 603–604. (in Russian)

20. Lidorenko N. S., Chizhik S. P., Gladkikh N. T., Grigorjeva L. K., Kuklin R. N. O roli razmernogo faktora v sdvige khimicheskogo ravnovesiya [About the role of dimensional factor in a chemical equilibrium shift]. Doklady AN SSSR. 1981. V. 257. No. 5. P. 1114–1118. (in Russian)

21. Vigdorovich V. I., Tsygankova L. E., Osetrov A. Y. Nanosostoyanie veshchestva kak osnova reakcionnoj sposobnosti nanomaterialov [Nanostate of compound as basis for nanomaterial reactivity]. Protection of Metals and Physical Chemistry of Surfaces. 2011. V. 47. No. 3. P. 410–415. (in Russian) DOI: 10.1134/S207020511103018X

22. Vigdorovich V. I., Strel’nikova K. O. Podavlenie nanorazmernyh effektov nanomaterialov iz gazovoj i zhidkoj faz [Suppression of nanoscale effects in nanomaterials by gas- and liquid-phase adsorbates]. Protection of Metals and Physical Chemistry of Surfaces. 2012. V. 48. No. 3. P. 383–387. (in Russian) DOI: 10.1134/S2070205112030197

23. Vigdorovich V. I., Tsygankova L. E. K termodinamike nanostrukturirovannyh materialov [Thermodynamics of nanostructured materials]. Protection of Metals and Physical Chemistry of Surfaces. 2012. V. 48. No. 5. P. 501–507. (in Russian) DOI: 10.1134/S2070205112050152.

24. Vigdorovich V. I., Tsygankova L. E. Rol’ predshestvuyushchej himicheskoj reakcii i reakcionnosposobnyh klasterov v processah fazovyh prevrashchenij intermetallicheskih soedinenij. [The role of a preceding chemical reaction and reactive clusters in phase transitions of intermetallic compounds]. Protection of Metals and Physical Chemistry of Surfaces. 2012. V. 48. No. 6. P. 608–613. (in Russian) DOI: 10.1134/S2070205112060184.

25. Vigdorovich V. I., Tsygankova L. E., Shel’ N. V. Zavisimost’ energii svyazi atomov maloaktivnyh klasterov ot chisla obrazuyushchih chastic. Klastery Cun, Agn, Aun [Dependence of binding energy of atoms in low-nuclear clusters on number of particles forming them. Cun, Agn, and Aun clusters]. Protection of Metals and Physical Chemistry of Surfaces. 2015. V. 51. No. 4. P. 567–574. (in Russian) DOI: 10.1134/S2070205115040346.

26. Vigdorowitsch M., Tsygankova L. E., Vigdorovich V. I., Knyazeva L. G. To the thermodynamic properties of nano-ensembles. Materials Science & Engineering: B. 2021. V. 263. C. 114897.

27. Kondepudi D., Prigogine I. Sovremennaya termodinamika. Ot teplovyh dvigatelej do dissipativnyh struktur [Modern Thermodynamics: From Heat Engines to Dissipative Structures]. Moscow, Mir, 2009. 461 p.

28. Stiller W. Uravnenie Arreniusa i neravnovesnaya kinetika [Arrhenius Equation and Non-Equilibrium Kinetics]. Moscow, Mir, 2000. 175 p.

29. Voyutsky S. S. Kurs kolloignoy khimii [Kurs of colloid chemistry]. Moskow, Khimiya, 1964. 575 p.

30. Sergeev G. B. Nanoknimiya [Nanochemistry]. Moscow, Moscow State University, 2007. 336 p.

31. Janke E., Emde F., Special’nye funkcii [Special functions]. Moscow, Nauka, 1968. pp. 70–71.

32. Gradstein I. S., Ryzhik I. M. Tablitsy integralov, summ, ryadov i proizvedenij [Tables of integrals, sums, series and products]. Moscow, GIFML, 1963. P. 106–107.

33. Olver F. W. J. Asymptotics and Special Functions, Academic Press, New York, London, 1974.

34. Goncharova E. V., Makarov A. S., Konchakov R. A., Kobelev N. P., Honik V. A. Premelting generation of interstitial defects in polycrystalline indium. Journal of Experimental and Theoretical Physics Letters. 2017. V. 106. No. 1. P. 35–39. (in Russian) DOI: 10.7868/S0370274X17130082

35. Kraftmakher Ya. Equilibrium vacancies and thermophysical properties of metals. Phys. Rep. 1998. V. 299. No. 2–3. P. 164.


Review

For citations:


Vigdorovich V.I., Vigdorowitsch M.V., Tsygankova L.E. To the Thermodynamic Characteristics of Nanosystems: Bulk (Vacancy-Related) Effect. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(6):493-510. (In Russ.) https://doi.org/10.1134/S2304487X20060115

Views: 107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)