Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Electron Temperature in the Interelectrode Gap of a Thermionic Energy Converter

https://doi.org/10.1134/S2304487X20060024

Abstract

   A mathematical model of the temperature of electrons of a thermionic converter in an arc mode has been described. Since the physical processes in the arc operation mode of the thermionic converter some-times cannot be accurately described, it is proposed to use reasonable assumptions to analyze the operation of the converter. One of the main characteristics of a low-temperature plasma in the thermionic converter is the temperature of the electrons in the interelectrode gap. The temperature of electrons in the thermionic converter depends to varying degrees on the conditions for converting the thermal energy into the electrical energy, for example, on the interelectrode gap, cesium vapor pressure, and current in the thermionic converter. However, most of the plasma characteristics depend on the ionization and recombination of particles in the interelectrode gap. Approximations in the mathematical model of the thermionic converter are associated with the determination of the physical characteristics of a low-temperature plasma in the interelectrode gap. The dependence of the rate of formation of ions in the interelectrode space of the converter is assumed. The estimate of the formation rate of ions in the interelectrode gap makes it possible to determine the characteristics of thermionic energy conversion. The analysis of the characteristics of the thermionic converter allows the optimization of the design and its operation mode. The presented model makes it possible to obtain the parameters of the thermionic converter in the arc mode of operation.

About the Authors

A. V. Belkin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



N. V. Schukin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Ushakov B. A., Nikitin V. D., Emelyanov I. A. Osnovy termoemissionnogo preobrazovaniya energii [Basics of thermionic energy conversion]. М., Atomizdat, 1974, p. 288.

2. Baksht F. G., Dyugev G. A., Marcinovskiy A. M., Moyges B. A., Pikus G. E., Sonin E. B., Yurev V. G. Termoemissionnye preobrazovateli i nizkotemperaturnaya plazma [Thermionic Converters and Low-Temperature Plasma]. М., Publisher “Science”, Main edition of the physical and mathematical literature, 1973, p. 479.

3. Kvasnikov L. A., Kaybyshev B. Z., Kalandarishvili A. G. Rabochie processy v termoemissionnyh preobrazovatelyah yadernyh energeticheskih ustanovok [The work processes in thermionic converters of nuclear power plants]. М., Publisher MAI, 2001, p. 208.

4. Korolev Yu. D. Elementarnye i kineticheskie processy v gazorazryadnoj plazme: uchebnoe posobie [Elementary and kinetic processes in gas-discharge plasma: a tutorial]. Tomsk: Publisher of Tomsk Polytechnic University, 2008, p. 128.

5. Kasikov I. I. Modelirovanie rabochih processov v termoemissionnyh preobrazovatelyah teplovoj energii. Diss. kand. fiz.-mat. nauk [Modeling of working processes in thermionic converters of thermal energy. Dissertation for the degree of candidate of physical and mathematical sciences]. Obninsk, 2002, p. 125.

6. Stahanov I. P., Sherbinin P. P. Raspredelenie plotnosti plazmy i napryazhennosti elektricheskogo polya na granice s elektrodom [Plasma density distribution and electric field strength at the interface with the electrode]. Prikl. Mekh. Tekh. Fiz. № 2. 1970, pp. 4–6. (in Russian)

7. Aleksandrov A. F., Ambaryan S. S., Micyk V. E., Pogosyan V. A. Stacionarnoe paspredelenie zaryazhennyh chastic v diffuzionnom priblizhenii [Stationary distribution of charged particles in the diffusion approximation]. Prikl. Mekh. Tekh. Fiz. № 2. 1969, pp. 62–66. (in Russian)

8. Kulandin A. A., Timashev S. V., Atamasov V. D. Osnovy teorii, konstrukcii i ekspluatacii YAEU [Fundamentals of the theory, design and operation of space NPU]. L., Energoatomizdat, 1987, p. 328.

9. Sinyavskiy V. V., Berjatiy V. I., Maevskiy V. A. Proektirovanie i ispytaniya termoemissionnyh tvelov [Design and testing of thermal emission fuel rods]. М., Atomizdat, 1981, p. 96.

10. Polous M. A., Alekseev P. A., Ehlakov I. A. [Modern сomputational technologies for substantiating the characteristics of nuclear electromotive installations in the design work for the creation of a new generation of thermionic space nuclear power plants. Electronic journal “Proceedings of the MAI”]. Sovremennye raschetnye tekhnologii obosnovaniya harakteristik yadernyh elektrodvigatel’nyh ustanovok v proektnyh rabotah sozdaniya termoemissionnyh kosmicheskih yadernyh energeticheskih ustanovok novogo pokoleniya. Elektronnyj zhurnal “Trudy MAI”, 2013, no. 68, p. 26. (in Russ.) Avaible at: https://trudymai.ru/published.php?ID=41822&referer=https%3A%2F%2Fwww.google.com%2F (accessed 05. 07. 2019)


Review

For citations:


Belkin A.V., Schukin N.V. Electron Temperature in the Interelectrode Gap of a Thermionic Energy Converter. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(6):511-516. (In Russ.) https://doi.org/10.1134/S2304487X20060024

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)