Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Точные решения нелинейного дифференциального уравнения шестого порядка для описания оптических импульсов

https://doi.org/10.1134/S2304487X20060085

Аннотация

Об авторах

Д. В. Сафонова
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



Н. А. Кудряшов
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



Список литературы

1. Biswas A. 1-soliton solution of the generalized Radhakrishnan–Kundu–Laksmanan equation // Physics Letters A. 2009. V. 373. P. 2546–2548.

2. Zhang J., Li S., Geng H. Bifurcations of exact travelling wave solutions for the generalized R–K–L equation // Journal of Applied Analysis and Computation. 2016. V. 6. Is. 4. P. 1205–1210.

3. Kudryashov N. A., Safonova D. V., Biswas A. Painlevé analysis and solution to the traveling wave reduction of Radhakrishnan–Kundu–Lakshmanan equation // Regular and Chaotic Dynamics. 2019. V. 24. № 6. P. 607–614.

4. Kundu A., Mukherjee A., Naskar T. Modeling rogue waves through exact dynamical lamps soliton controlled by ocean currents // Proc. R. Soc. A. 2014. V. 470. 20130576.

5. Ekici M., Sonmezoglu A., Biswas A., Belie M. R. Optical solitons in (2+l)-dimension with Kundu–Mukherjee–Naskar equation by extended trial function scheme // Chinese Journal of Physics. 2019. V. 57. P. 72–77.

6. Kudryashov N. A. General solution of traveling wave reduction for the Kundu–Mukherjee–Naskar equation // Optik. 2019. V. 186. P. 22–27.

7. Biswas A. Chirp-free bright optical soliton perturbation with Chen–Lee–Liu equation by traveling wave hypothesis and semi-inverse variational principle // Optik. 2018. V. 172. P. 772–776.

8. Kudryashov N. A. General solution of the traveling wave reduction for the perturbed Chen–Lee–Liu equation // Optik. 2019. V. 186. P. 339–349.

9. Bansal A., Biswas A., Zhou Q., Arshed S., Alzahrani A. K., Belie M. R. Optical solitons with Chen–Lee–Liu equation by Lie symmetry // Optik. 2020. V. 384. 126202.

10. Triki H., Biswas A. Sub pico-second chirped envelope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schrödinger's model // Optics. 2018. V. 173. P. 235–241.

11. Zhou Q., Ekici M., Sonmezoglu A. Exact chirped singular soliton solutions of Triki–Biswas equation // Optik. 2019. V. 181. P. 338–342.

12. Kudryashov N. A. First integral and general solution of traveling wave reduction for the Triki–Biswas equation // Optik. 2019. V. 185. P. 275–281.

13. Gerdjikov V. S., Ivanov M. I. Expansions over the 'squared' solutions and the inhomogeneous nonlinear Schrodinger equation // Inverse Problems. 1992. V. 8. P. 831–847.

14. Das A., Biswas A., Ekici M., Zhou Q., Alshomrant A., Belic M. R. Optical solitons with complex Ginzburg–Landau equation for two nonlinear forms using F-expansion // Chinese Journal of Physics. 2019. V. 61. P. 255–261.

15. Kudryashov N. A. Traveling wave solutions of the generalized Gerdjikov–Ivanov equation // Optics. 2020. V. 219. 165193.

16. Kudryashov N. A. Periodic and solitary waves of the Biswas–Arshed equation // Optik. 2020. V. 200. 163442.

17. Aouadi S., Bouzida A., Daoui A. K., Triki H., Zhou Q., Liu S. W-shaped, bright and dark solitons of Biswas–Arshed equation // Optik. 2019. V. 182. P. 227–232.

18. Ekici M., Sonmezoglu A. Optical solitons with Biswas–Arshed equation by extended trial function method // Optik. 2019. V. 177. P. 13–20.

19. Lenells J., Fokas A. S. An integrable generalization of the nonlinear Schrodinger equation on the half-line and solitons // Inverse Problems. 2009. V. 25. Is. 11. 115006.

20. Kudryashov N. A. A re-visitation of the results on Fokas–Lenells equation by Mahak and Akram // Optik. 2020. V. 209. 164522.

21. Al-Ghafri K. S., Krishnan E. V., Biswas A. Chirped optical soliton perturbation of Fokas–Lenells equation with full nonlinearity // Advances in Difference Equations. 2020. V. 2020. Is. 1. P. 191.

22. Kudryashov N. A. On traveling wave solutions of the Kundu–Eckhaus equation // Optik. 2020. V. 224. 165500.

23. Kundu A., Mukherjee A. Novel integrable higher-dimensional nonlinear Schrödinger equation: properties, solutions, applications, 2013.

24. Kudryashov N. A. Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic-quintic nonlinearity // Optik. 2019. V. 188. P. 27–35.

25. Kudryashov N. A. Traveling wave solutions of the generalized nonlinear Schrödinger equation with antyi-cubic nonlinearity // Optik. 2019. V. 185. P. 665–671.

26. Kudryashov N. A., Safonova D. V. Nonautonomous first integrals and general solutions of the KdV–Burgers and mKdV–Burgers equations with the source // Mathematical Methods in the Applied Sciences. 2019. V. 42. № 13. P. 4627–4636.

27. Кудряшов H. A. Точные решения уравнения Кортевега–де Вриза–Бюргерса с источником / Н. А. Кудряшов, Д. В. Сафонова // Вестник НИЯУ МИФИ. – 2019. – Т. 8. – № 2. – С. 124–131.

28. Ablowitz M. J., Clarkson P. A. Solitons nonlinear evolution equations and inverse scattering. Cambridge University Press, 1991.

29. Ablowitz M. J., Segur H. Exact linearization of a painleve transcendent // Phys. Rev. Lett. 1977. V. 38. 1103-6.

30. Ablowitz M. J., Ramani A., Segur H. A connection between nonlinear evolution equations and ordinary differential equations of p-type. I // J. Math. Phys. 1980. V. 21. P. 715–721.

31. Кудряшов H. A. Точные решения нелинейного дифференциального уравнения для описания оптических импульсов с нелинейностью третьей и пятой степени / Н. А. Кудряшов, Д. В. Сафонова // Вестник НИЯУ МИФИ. – 2020. – Т. 9. – № 1. – С. 25–31.

32. Kudryashov N. A. Construction of nonlinear equations for description of propagation pulses in optical fiber // Optik. 2019. V. 192. 162964.

33. Kudryashov N. A. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos Soliton Fractals. 2005. V. 24. P. 1217–1231.

34. Kudryashov N. A. Exact solitary waves of the Fisher equations // Physics Letters A. 2005. V. 342. P. 99–106.


Рецензия

Для цитирования:


Сафонова Д.В., Кудряшов Н.А. Точные решения нелинейного дифференциального уравнения шестого порядка для описания оптических импульсов. Вестник НИЯУ МИФИ. 2020;9(6):521-528. https://doi.org/10.1134/S2304487X20060085

For citation:


Safonova D.V., Kudryashov N.A. Exact Solution of Sixth Order Nonlinear Differential Equations for Description of Optical Pulses. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(6):521-528. (In Russ.) https://doi.org/10.1134/S2304487X20060085

Просмотров: 101


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)