Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Exact Solution of Sixth Order Nonlinear Differential Equations for Description of Optical Pulses

https://doi.org/10.1134/S2304487X20060085

Abstract

   A sixth order partial differential equation with nonlocal and power nonlinearities has been discussed. The equation is used to describe optical pulses. Since the Cauchy problem for this partial differential equation cannot be solved by the method of the inverse scattering transform, the traveling wave reduction of this equation has been considered. The use of the traveling wave variables separates the imaginary and real parts of the equation; as a result, a system of ordinary differential equations (ODEs) has been obtained. The Painlevé test is used to check the integrability of this system. The system of ODEs does not pass the Painlevé test, since complex Fuchs indices exist. Conditions for some parameters of the equation, under which the system of ODEs becomes consistent, have been obtained. Taking into account these conditions, one ODE of the sixth order has been evaluated. The method of the simplest equations has been used to construct solutions. The constructed solutions have been expressed in terms of the exponential function and the Jacobi elliptic function and have the form of solitary and periodic waves. The found wave solutions of the equation have been illustrated for some values of the parameters.

About the Authors

D. V. Safonova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Biswas A. 1-soliton solution of the generalized Radhakrishnan–Kundu–Laksmanan equation // Physics Letters A. 2009. V. 373. P. 2546–2548.

2. Zhang J., Li S., Geng H. Bifurcations of exact travelling wave solutions for the generalized R–K–L equation // Journal of Applied Analysis and Computation. 2016. V. 6. Is. 4. P. 1205–1210.

3. Kudryashov N. A., Safonova D. V., Biswas A. Painlevé analysis and solution to the traveling wave reduction of Radhakrishnan–Kundu–Lakshmanan equation // Regular and Chaotic Dynamics. 2019. V. 24. № 6. P. 607–614.

4. Kundu A., Mukherjee A., Naskar T. Modeling rogue waves through exact dynamical lamps soliton controlled by ocean currents // Proc. R. Soc. A. 2014. V. 470. 20130576.

5. Ekici M., Sonmezoglu A., Biswas A., Belie M. R. Optical solitons in (2+l)-dimension with Kundu–Mukherjee–Naskar equation by extended trial function scheme // Chinese Journal of Physics. 2019. V. 57. P. 72–77.

6. Kudryashov N. A. General solution of traveling wave reduction for the Kundu–Mukherjee–Naskar equation // Optik. 2019. V. 186. P. 22–27.

7. Biswas A. Chirp-free bright optical soliton perturbation with Chen–Lee–Liu equation by traveling wave hypothesis and semi-inverse variational principle // Optik. 2018. V. 172. P. 772–776.

8. Kudryashov N. A. General solution of the traveling wave reduction for the perturbed Chen–Lee–Liu equation // Optik. 2019. V. 186. P. 339–349.

9. Bansal A., Biswas A., Zhou Q., Arshed S., Alzahrani A. K., Belie M. R. Optical solitons with Chen–Lee–Liu equation by Lie symmetry // Optik. 2020. V. 384. 126202.

10. Triki H., Biswas A. Sub pico-second chirped envelope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schrödinger's model // Optics. 2018. V. 173. P. 235–241.

11. Zhou Q., Ekici M., Sonmezoglu A. Exact chirped singular soliton solutions of Triki–Biswas equation // Optik. 2019. V. 181. P. 338–342.

12. Kudryashov N. A. First integral and general solution of traveling wave reduction for the Triki–Biswas equation // Optik. 2019. V. 185. P. 275–281.

13. Gerdjikov V. S., Ivanov M. I. Expansions over the 'squared' solutions and the inhomogeneous nonlinear Schrodinger equation // Inverse Problems. 1992. V. 8. P. 831–847.

14. Das A., Biswas A., Ekici M., Zhou Q., Alshomrant A., Belic M. R. Optical solitons with complex Ginzburg–Landau equation for two nonlinear forms using F-expansion // Chinese Journal of Physics. 2019. V. 61. P. 255–261.

15. Kudryashov N. A. Traveling wave solutions of the generalized Gerdjikov–Ivanov equation // Optics. 2020. V. 219. 165193.

16. Kudryashov N. A. Periodic and solitary waves of the Biswas–Arshed equation // Optik. 2020. V. 200. 163442.

17. Aouadi S., Bouzida A., Daoui A. K., Triki H., Zhou Q., Liu S. W-shaped, bright and dark solitons of Biswas–Arshed equation // Optik. 2019. V. 182. P. 227–232.

18. Ekici M., Sonmezoglu A. Optical solitons with Biswas–Arshed equation by extended trial function method // Optik. 2019. V. 177. P. 13–20.

19. Lenells J., Fokas A. S. An integrable generalization of the nonlinear Schrodinger equation on the half-line and solitons // Inverse Problems. 2009. V. 25. Is. 11. 115006.

20. Kudryashov N. A. A re-visitation of the results on Fokas–Lenells equation by Mahak and Akram // Optik. 2020. V. 209. 164522.

21. Al-Ghafri K. S., Krishnan E. V., Biswas A. Chirped optical soliton perturbation of Fokas–Lenells equation with full nonlinearity // Advances in Difference Equations. 2020. V. 2020. Is. 1. P. 191.

22. Kudryashov N. A. On traveling wave solutions of the Kundu–Eckhaus equation // Optik. 2020. V. 224. 165500.

23. Kundu A., Mukherjee A. Novel integrable higher-dimensional nonlinear Schrödinger equation: properties, solutions, applications, 2013.

24. Kudryashov N. A. Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic-quintic nonlinearity // Optik. 2019. V. 188. P. 27–35.

25. Kudryashov N. A. Traveling wave solutions of the generalized nonlinear Schrödinger equation with antyi-cubic nonlinearity // Optik. 2019. V. 185. P. 665–671.

26. Kudryashov N. A., Safonova D. V. Nonautonomous first integrals and general solutions of the KdV–Burgers and mKdV–Burgers equations with the source // Mathematical Methods in the Applied Sciences. 2019. V. 42. № 13. P. 4627–4636.

27. Kudryashov N. A., Safonova D. V. Tochniye resheniya uravneniya Kortewega–de Vrisa–Burgersa s istochnikom. [Exact Solutions of the Korteweg–de Vries–Burgers Equation with a Source]. Vestnik Natsional’nogo issledovatel’skogo yadernogo universiteta “MIFI”, 2019, vol. 8, no. 2, pp. 124–131. (in Russian)

28. Ablowitz M. J., Clarkson P. A. Solitons nonlinear evolution equations and inverse scattering. Cambridge University Press, 1991.

29. Ablowitz M. J., Segur H. Exact linearization of a painleve transcendent // Phys. Rev. Lett. 1977. V. 38. 1103-6.

30. Ablowitz M. J., Ramani A., Segur H. A connection between nonlinear evolution equations and ordinary differential equations of p-type. I // J. Math. Phys. 1980. V. 21. P. 715–721.

31. Kudryashov N. A., Safonova D. V. Tochniye resheniya nelineynogo differencialnogo uravneniya dlya opisaniya opticheskih impulsov s nelineynostyu tretey i pyatoy stepeni. [Exact Solutions of a Nonlinear Differential Equation with Third and Fifth Degree Nonlinearities for Description of Optical Pulses]. Vestnik Natsional’nogo issledovatel’skogo yadernogo universiteta “MIFI”, 2020, vol. 9, no. 1, pp. 25–31. (in Russian)

32. Kudryashov N. A. Construction of nonlinear equations for description of propagation pulses in optical fiber // Optik. 2019. V. 192. 162964.

33. Kudryashov N. A. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos Soliton Fractals. 2005. V. 24. P. 1217–1231.

34. Kudryashov N. A. Exact solitary waves of the Fisher equations // Physics Letters A. 2005. V. 342. P. 99–106.


Review

For citations:


Safonova D.V., Kudryashov N.A. Exact Solution of Sixth Order Nonlinear Differential Equations for Description of Optical Pulses. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(6):521-528. (In Russ.) https://doi.org/10.1134/S2304487X20060085

Views: 103


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)