Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Inverse Compton Scattering of Photons and Equivalent Photons by Channeled Particles

https://doi.org/10.56304/S2304487X21040076

Abstract

   The Compton scattering effect of electromagnetic waves (photons) by free electrons has been known since the beginning of the 20th century. A photon moving towards a fast electron can be scattered in the opposite direction, significantly increasing its energy due to the loss of it by the electron. When the scattering electron is not free, but moves in a single crystal in the channeling mode, periodic harmonics of the potential of atomic planes or axes along which the channeled electron moves can serve as the scattered photon. In the so-called accompanying reference system moving at the velocity, equal to the longitudinal component of the channeled particle velocity, these harmonics can be considered as electromagnetic waves (equivalent photons) interacting with the electron making finite orbital or oscillatory motion in the averaged potential of the atomic axis or plane. The result of equivalent photon backscattering is a real photon, observable as a high-energy photon in the laboratory system. Due to the discreteness of the transversal motion energy spectrum of the channeled electron, the emitted photon spectrum will also be discrete. This work continues a series of our previous studies [3–5] of effects associated with electromagnetic processes during the passage of the fast charged particles through crystal structures within a mixed quantum–classical approach. The backscattering kinematics of photons and equivalent photons by the ultrarelativistic electrons has been analyzed in detail in the general case and in the channeling mode. The characteristic frequencies have been calculated and the intensity of the resulting radiation has been estimated.

About the Authors

N. P. Kalashnikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



A. S. Olchak
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Weizsacker C. Zs. // Z. Phys. 1934. V. 88. P. 612–625.

2. Williams E. // Phys. Rev. 1934. V. 45. P. 729; Kgl. Dansk. Vid. Selsk. 1935. V. 13. P. 4.

3. Akhiezer A. I., Shulga N. F. Elektrodinamika vysokih energij v veshchestve. [High Energy Electrodynamics in Matter]. Moscow, Nauka Publ, 1993. 344 p.

4. Lindhard J. Vliyanie kristallicheskoj reshetki na dvizhenie bystryh zaryazhennyh chastic. [Effect of the crystal lattice on the motion of fast charged particle]. Achievements of physical sciences ,1969, vol. 99. no 2, pp. 249–296.

5. Kalashnikov N. P. Kogerentnye vzaimodejstviya zaryazhennyh chastic v monokristallah [Coherent Interactions of Charged Particles in Single Crystals]. Moscow, Atomizdat Publ, 1981. 224 p.

6. Baryshevskii V. G. Kanalirovanie, izluchenie i reakcii v kristallah pri vysokih energiyah. [Channeling, Radiation and Reactions in Single Crystal at High Energies]. Minsk, Izd. BGU im. V. I. Lenina Publ, 1982, 256 p.

7. Vorobyov S. Kanalirovanie elektronnyh puchkov [Channeling of electron beams], Moscow, Energoatomizdat Publ. 1984. 96 p.

8. Kalashnikov N.P., Olchak A.S., Khangulian E.V. Radiation from Channeling Electrons, Stimulated by Laser Beam. NIM B, 2013. vol. 309, pp. 67–69.

9. Kalashnikov N.P., Olchak A.S. Resonance Capture of Electrons and Positrons in the Axial Channeling Mode at a Crystal Surface. Journal of Surface Investigation, 2017, 11, 3, Q3, 646–649. doi^ 10.1134/S1027451017030284

10. Kalashnikov N.P., Olchak A.S. On the Reflection and Diffraction of Hard Gamma Quanta at the Crystal Surface. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2018, vol. 12, no. 2, Q3, 317–321. doi: 10.1134/S102745101706009X

11. Zagainov V.A., Kalashnikov N.P., Olchak A.S. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2020, vol. 14, no. 2, Q3, 312–315. doi: 10.1134/S1027451020020391

12. Kalashnikov N. P., Olchak A. S. Relativistic electron energy conversion in one photon in crystals. Journal of Instrumentation, 2020, 15, 1, Q2. doi: 10.1088/1748-0221/15/01/C01041

13. Kalashnikov N. P., Matyatina A. N., Olchak A. S. Vzryv metallicheskogo snaryada pri soudarenii s pregradoj. [The explosion of a metal projectile when it collides with an obstacle]. Vestnik NIYaU MIFI, 2018, vol. 7, no. 5, 371–375.

14. Andersen J. U., Bonderup E., Loegsgaard E. et al. NIM. 1982. V. 194. P. 209–224.

15. Kalashnikov N. P., Mamonov M. N., Olchak A. S., Strikhanov M. N. Zaselennosti zon i parametry izlucheniya ploskokanalirovannyh elektronov. [The population of zones and the parameters of the radiation of flat-channel electrons]. Solid State Physics (in Russian), 1983, vol. 25, no 1, pp. 190–197.


Review

For citations:


Kalashnikov N.P., Olchak A.S. Inverse Compton Scattering of Photons and Equivalent Photons by Channeled Particles. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(4):289-294. (In Russ.) https://doi.org/10.56304/S2304487X21040076

Views: 232


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)