Soliton Solutions of the Chen–Li–Liu Equation with an Arbitrary Refractive Index
https://doi.org/10.1134/S2304487X21040088
Abstract
The perturbed Chen–Li–Liu equation with an arbitrary refractive index describing the propagation of pulses in an optical fiber is considered. The traveling wave reduction is used to find a solution of this nonlinear partial differential equation. Separating the imaginary and real parts of the resulting equation and equating them to zero, a system of ordinary differential equations is constructed. The compatibility conditions of the system of ordinary differential equations are determined. Stationary points of the system of equations are found. Exact solutions of the mathematical model are obtained for n = 1 and 2 expressed in terms of the Jacobi and Weierstrass elliptic functions. It is shown that the solutions found in the case of an arbitrary refractive index have the form of periodic and solitary waves (optical solitons).
Keywords
About the Authors
N. A. KudryashovRussian Federation
115409
Moscow
N. V. Ermolaeva
Russian Federation
115409
347360
Moscow
Rostovskaya oblast
Volgodonsk
References
1. Biswas A. Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by traveling wave hypothesis // Optik. 2018. V. 171. P. 217–220.
2. Kudryashov N. A. First integrals and solutions of the traveling wave reduction for the Triki–Biswas equation // Optik. 2019. V. 185. P. 275–281.
3. Biswas A. Chirp-free bright optical soliton perurbation with Chen–Lee–Liu equation by traveling hypothesis and semi-inverse variational principle // Optik. 2018. V. 172. P. 772–776.
4. Tsuchida T., Wadati M. New integrable systems of derivative nonlinear Schrödinger equations with multiple components // Phys. Lett. A. 1999. V. 257 (1–2). P. 53–64.
5. Fan E. A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations // J. Math. Phys. 2001. V. 42 (9). P. 4327–4344.
6. Yang B., Zhang W.-G., Zhang H.-Q., Pei S.-B. Generalized Darboux transformation and rational soliton solutions for Chen–Lee–Liu equation // Appl. Math. Comput. 2014. V. 242. P. 863–876.
7. Kudryashov N. A. General solution of the traveling wave reduction for the perturbed Chen-Lee-Liu equation // Optik, 2019. V. 186. P. 339–349.
8. Triki H., Babatin M. M., Biswas A. Chirped bright solitons for Chen–Lee–Liu equation in optical fibers and PCF // Optik. 2018. V. 149. P. 300–303.
9. Triki H., Hamaizia Y., Zhou Q., Biswas A., Ullahd M. Z., Moshokoae S. P., Belic M. Chirped dark and gray solitons for Chen–Lee–Liu equation in optical fibers and PCF // Optik. 2018. V. 155. P. 329–333.
10. Jawad A. J. M., Biswas A., Zhou Q., Alfiras M., Moshokoa S. P., Belic M. Chirped singular and combo optical solitons for Chen–Lee–Liu equation with three forms of integration architecture // Optik. 2018. V. 178. P. 172–177.
11. Kudryashov N. A. A generalized model for description of propagation pulses in optical fiber // Optik. 2019. V. 189. P. 42–52.
12. Kudryashov N. A. Mathematical model of propagation pulse in optical fiber with power nonlinearities // Optik. 2020. V. 212. P. 164750.
13. Kudryashov N. A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations // Appl. Math. Comput. 2020. V. 371. P. 124972.
14. Biswas A., Ekici M., Dakova A., Khan S., Moshokoa S. P., Alshehri H. M., Belic M. R. Highly dispersive optical soliton perturbation with Kudryashov’s sextic-power law nonlinear refractive index by semi-inverse variation // Results Phys. 2021. V. 27. P. 104539.
15. Arrowsmith D. K., Place C. M. Ordinary Differential Equations. A Qualitative Approach with Applications, Chapman and Hall. London, New York, 1982.
16. Kudryashov N. A. The Lakshmanan–Porsezian–Daniel model with arbitrary refractive index and its solution // Optik. 2021. V. 241. P. 167043.
17. Kudryashov N. A. Construction of nonlinear differential equations for description of propagation pulses in optical fiber // Optik. 2019. V. 192. P. 162964.
Review
For citations:
Kudryashov N.A., Ermolaeva N.V. Soliton Solutions of the Chen–Li–Liu Equation with an Arbitrary Refractive Index. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(4):302-307. (In Russ.) https://doi.org/10.1134/S2304487X21040088