Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Computational and Experimental Modeling of Multidirectional Gas Flows inside a Rectangular Furnace Channel for Sintering Nuclear Fuel Pellets

https://doi.org/10.1134/S2304487X21040118

Abstract

   The oxygen concentration distribution in argon inside the mockup channel and the furnace channel for sintering uranium-plutonium nitride fuel pellets at room temperature is modeled numerically and experimentally. The numerical modeling is performed within the CFD model of the furnace channel developed with Ansys Fluent software. The CFD model is tested and verified using previous experimental data on the distribution of oxygen concentrations in argon obtained on a specifically designed test bench for gas-dynamic studies of the furnace channel for sintering uranium–plutonium nitride fuel pellets. The study reports the calculated and experimental possibility in principle to implement a three-zone separation of gases in a furnace channel with specific nitrogen and argon concentrations required for sintering nuclear fuel pellets. The CFD model satisfactorily describes the gas-dynamic processes in the sintering furnace channel in the fuel pellet heating, sintering, and cooling zones. The best agreement between the calculated and experimental concentrations is reached in the central part of the channel (in the area of location of the fuel pellet boats). The calculated concentrations of oxygen in argon exceed the experimental ones almost everywhere, except for several points on the surface of the supporting plates with boat dummies near the oxygen supply unit. The difference between the calculated and experimental oxygen concentrations on the surface of the supporting plates with the boat dummies is in the range from 0.1 to 6.6 vol %. The CFD model can be used to select the parameters for the furnace channel to ensure compliance with the established requirements for the composition of gaseous media at operating temperatures.

About the Authors

R. N. Shamsutdinov
Sosny R&D Company
Russian Federation

433507

Ul’yanovskaya oblast

Dimitrovgrad



S. V. Pavlov
Sosny R&D Company
Russian Federation

433507

Ul’yanovskaya oblast

Dimitrovgrad



I. V. Kuzmin
Sosny R&D Company
Russian Federation

433507

Ul’yanovskaya oblast

Dimitrovgrad



A. Yu. Leshchenko
Sosny R&D Company
Russian Federation

433507

Ul’yanovskaya oblast

Dimitrovgrad



M. I. Ilyashik
Proryv Company
Russian Federation

107140

Moscow



M. K. Gorbachev
Proryv Company
Russian Federation

107140

Moscow



References

1. Adamov E. O. Closed fuel cycle technologies based on fast reactors as the corner stone for sustainable development of nuclear power // Proceedings of an International conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development (FR17). Yekaterinburg, 2017. P. 17–34.

2. Denisov A. L., Reynaud V., Smirnov V. P., Pavlov S. V., Renard F., Chamovskih Y. V., Sergeev N. G., Shkurin P. A., Davydov A. V., Glushenkov A. E. Key features of design, manufacturing and implementation of laboratory and industrial equipment for Mixed Uranium-Plutonium Oxide (MOX) and Nitride fuel pellets fabrication in Russia // Proceedings of an International Conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development (FR17). Yekaterinburg, 2017.

3. Alekseev S. V., Zajcev V. A. Nitridnoe toplivo dlya yadernoj energetiki [Nitride fuel for nuclear energetics]. Moscow, Tekhnosfera Publ., 2013, p. 246.

4. Leshchenko A. Yu., Pavlov S. V., Shamsutdinov R. N. Modelirovanie raspredeleniya gazov v pechi spekaniya dlya proizvodstva smeshannogo nitridnogo uran-plutonievogo topliva [Modeling gas distribution inside a sintering furnace for production of mixed nitride uranium-plutonium fuel], Sbornik tezisov dokladov VI nauchnogo seminara “Modelirovanie tekhnologij yadernogo toplivnogo cikla”, Snezhinsk, 2017, p. 28 (in Russian).

5. Shamsutdinov R. N., Pavlov S. V., Leshchenko A. Yu., Kuzmin I. V. Raschetno-eksperimental’noe obosnovanie konstrukcii rabochego kanala pechi spekaniya tabletok smeshannogo nitridnogo uran-plutonievogo topliva [Computational and experimental justification of furnace channel design for sintering of mixed uranium-plutonium nitride fuel pellets], Sbornik dokladov V Mezhdunarodnoj nauchno-tekhnicheskoj konferencii “Innovacionnye proekty i tekhnologii yadernoj energetiki”, Moscow, 2018, pp. 1528–1535 (in Russian).

6. Kuzmin I. V., Leshchenko A. Yu., Pavlov S. V., Shamsutdinov R. N., Mochalov Yu. S. Eksperimental’nyj stend dlya gazodinamicheskih issledovanij kanala pechi spekaniya tabletok yadernogo topliva [Experimental bench for gas-dynamic investigations of the furnace channel for nuclear fuel pellets sintering]. Izvestiya vuzov. Yadernaya energetika, 2018, № 4, pp. 53–63. (in Russian)

7. Ansys Inc. Ansys Fluent Theory Guide, Release 14.0. USA. Ansys, 2011. 826 p.

8. Roache P. J. Fundamentals of computational fluid dynamics. Albuquerque, New Mexico: Hermosa Publishers, 1998. P. 648.

9. Fedorova N. N. Osnovy raboty v Ansys 17 [Ansys 17 basics], Moscow, DMK Press Publ., 2017. p. 210.

10. Wilcox D. C. Turbulence Modeling for CFD. La Canada, California: DCW Industries, 1998. P. 460.


Review

For citations:


Shamsutdinov R.N., Pavlov S.V., Kuzmin I.V., Leshchenko A.Yu., Ilyashik M.I., Gorbachev M.K. Computational and Experimental Modeling of Multidirectional Gas Flows inside a Rectangular Furnace Channel for Sintering Nuclear Fuel Pellets. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(4):363-374. (In Russ.) https://doi.org/10.1134/S2304487X21040118

Views: 118


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)