Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Dark and Bright Solitons of the Nonlinear Schrödinger Equation with Saturation

https://doi.org/10.56304/S2304487X22010023

Abstract

   A generalized model of the Schrödinger equation is considered to describe the propagation of pulses in a nonlinear medium with saturation. The Cauchy problem for it is not solved by the inverse scattering transform; the solution of the equation is considered including the travelling wave. A system of differential equations for the imaginary and real parts has been derived in terms of the traveling wave variables. Optical solitons for describing the propagation of pulses are obtained in the form of implicit functions. Analytical solutions are expressed in terms of an exponential function. The solutions obtained for light and dark solitons in a saturating medium of the generalized nonlinear Schrödinger equation are solitary waves under certain restrictions on the model parameters. The solutions obtained are plotted.

About the Authors

E. V. Antonova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Kivshar Y. S., Agrawal G. P. Optical Solitons: From Fibers to Photonic Crystals // Academic Press, 2003.

2. Kivshar Y. S., Luther-Davies B. Dark optical soltons: physics and applications // Phys. Rep., 1998. V. 298. P. 81–97.

3. Marburger J. H., Dawes E. Dynamical formation of a small-scale lament // Phys. Rev. Lett., 1968. V. 21 (8). P. 556–558.

4. Gustafson T. K., Kelley P. L., Chiao R. Y., Brewer R. G. Self-trapping in media with saturation of the nonlinear index // Appl. Phys. Lett., 1968. V. 12 (5). P. 165–168.

5. Reichert J. D., Wagner W. G. Self-trapped optical beams in liquids // IEEE J. Quan-tum Electron. QE-4 (4), 1968. P. 221–225.

6. Kudryashov N. A. Optical solitons of mathematical model with arbitrary refractive index // Optik, 2020. V. 224. P. 165391.

7. Kudryashov N. A. On traveling wave solutions of the Kundu – Eckhaus equation // Optik, 2020. V. 224. P. 165500.

8. Kudryashov N. A. Metody nelinejnoj matematicheskoj fiziki. [Methods of nonlinear mathematical physics]. Dolgoprudnyj. Dom Intellekta Publ., 2010, 364 p.

9. Kudryashov N. A., Antonova E. V. Solitary waves of equation for propagation pulse with power nonlinearities // Optik, 2020. V. 217. P. 164881.

10. Krolikowski W., Luther-Davies B. Analytic solution for soliton propagation in a nonlinear saturable medium // Opt. Lett., 1992. V. 17 (20). P. 1414–1416.

11. Krolikowski W., Luther-Davies B. Dark optical solitons in saturable nonlinear media // Opt. Lett., 1993. V. 18 (3). P. 188–190.

12. Krolikowski W., Akhmediev N., Luther-Davies B. Darker-than-black solitons: dark solitons with total phase shift greater than // Phys. Rev. E, 1993. V. 48 (5). P. 3980–3987.

13. Kudryashov N. A. First integrals and general solution of the traveling wave reduction for Schredinger equation with anti-cubic nonlinearity // Optik, 2019. V. 185. P. 665–671.

14. Kudryashov N. A. Solitary wave solutions of hierarchy with non-local nonlinearity // Appl. Math. Lett., 2020. V. 103. P. 106155.

15. Kudryashov N. A. Highly dispersive solitary wave solutions of perturbed nonlinear Schredinger equations // Appl. Math. Comput., 2020. V. 371. P. 124972.

16. Kudryashov N. A. Mathematical model of propagation pulse in optical-ber with power Nonlinearities // Optik, 2020. V. 212. P. 164750.

17. Dan J., Sain S., Ghose-Choudhary A., Garai S. Application of the Kudryashov function for finding solitary wave solutions of NLS type differential equations // Optik, 2020. V. 224. P. 165519.

18. Kudryashov N. A. Bright and dark solitons in a nonlinear saturable medium // Physics Letters A, 2022, P. 127913.

19. Kudryashov N. A. Method for finding highly dispersive optical solitons of non-linear differential equations // Optik, 2019. V. 206. P. 163550.

20. Kudryashov N. A. Mathematical model of propagation pulse in optical fiber with power Nonlinearities // Optik, 2020. V. 212. P. 164750.

21. Kudryashov N. A. Solitary wave solutions of hierarchy with non-local nonlin-earity // Appl. Math. Lett., 2020. V. 103. P. 106155.


Review

For citations:


Antonova E.V., Kudryashov N.A. Dark and Bright Solitons of the Nonlinear Schrödinger Equation with Saturation. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(1):22-27. (In Russ.) https://doi.org/10.56304/S2304487X22010023

Views: 309


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)