Some Recommendations on Targets for Laser Fusion
https://doi.org/10.56304/S2304487X22010035
Abstract
Proposed recommendations for target changes and the expected consequences of these changes, in particular, a possible increase in the stability of the compression flow, as well as a certain energy saving of external influence, are discussed in application to laser fusion targets used at the American NIF facility. The proposed changes are based on the analysis of the results of a quite long-term mathematical simulation of gas-dynamic flows arising from various types of focusing of a continuous medium into a decreasing volume. The mathematical theory of shockless strong compression of an ideal gas is the main result of this work.
About the Authors
S. P. BautinRussian Federation
456776
Chelyabinsk region
Snezhinsk
Yu. V. Nikolaev
Russian Federation
456776
Chelyabinsk region
Snezhinsk
E. I. Ponkin
Russian Federation
456776
Chelyabinsk region
Snezhinsk
References
1. Ilkaev R. I., Garanin S. G. Issledovanie problem termoajdernogo sinteza na moshnyh lazernyh ustanovkah [Investigation of the problems of thermonuclear fusion on high-power laser facilities]. Vestnik RAN. 2006, vol. 76, no. 6, pp. 503–513. (in Russian)
2. Bernstein L. A., Reactions on Excited States Using the National Ignition Facility. Nuclear Astrophysics Using NIF. Preprint no. UCRL PRES-233342. Lawrence Livermore Nat. Lab., Livermore, 2007.
3. Wanguo Zheng, Xiaofeng Wei, Qihua Zhu, Feng Jing, Dongxia Hu, Xiaodong Yuan, Wanjun Dai, Wei Zhou, Fang Wang, Dangpeng Xu, Xudong Xie, Bin Feng, Zhitao Peng, Liangfu Guo, Yuanbin Chen, Xiongjun Zhang, Lanqin Liu, Donghui Lin, Zhao Dang, Yong Xiang, Rui Zhang, Fang Wang, Huaiting Jia, and Xuewei Deng, Laser performance upgrade for precise ICF experiment in SG-IIIlaser facility. Matter and Radiation at Extremes , 2017, vol. 2, pp. 243–255. doi: 10.1016/j.mre.2017.07.004.
4. Bautin S. P. Matematicyeskaj teorija bezudarnogo silnogo szatija idealnogo gaza [Mathematical theory of shockless strong compression of an ideal gas]. Novosibirsk. Nauka. Publ., 1997, 160 p.
5. Bautin S. P. Matematicheskoe issledovanie bezudarnogo szatiaj gaza [Mathematical study of shockless gas compression]. Uspehi mehaniki. 2002, vol. 1, no. 2, pp. 3–36. (in Russian)
6. Bautin S. P. Matematicheskoe modelirovanie silnogo szatija gaza [Mathematical modeling of strong gas compression]. Novosibirsk, Nauka, 2007, 312 p.
7. Bautin S. P. Ob odnoi konstrukcyi mishenei dlaj upravlajemogo termoajdernogo sinteza [On one design of targets for controlled thermonuclear fusion]. Zababahiskie scientific readings. Collection of materials of the X International Conference. Snezinsk. RFNC-VSRI TP, 2010, pp. 30–31. (in Russian)
8. Bautin S. P. Misen dlaj polucheniaj termoajdernyh reakcii [Target for obtaining thermonuclear reactions]. Patent RF 2432627, MPK G21B 1/19(2006.01), 2011.
9. Bautin S. P., Nikolaev Yu. V. Chislennoe reshenie zadachi o szatii gaza iz pokoaj v pokoi [Numerical solution of the problem of gas compression from rest to rest]. Vychislitelnye tehnologii. 2020, vol. 25, no. 5, pp. 55–65. (in Russian)
10. Bautin S. P., Nikolaev Yu. V. Chislennoe reshenie zadachi o szatii gaza pri zadannom zakone vozdeistviaj [Numerical solution of the problem of gas compression for a given action law]. Vychislitelnye tehnologii, 2021, vol. 26, no. 6, pp. 20–32. (in Russian)
11. Bautin S. P., Ponkin E. I. Avtomodelnye resheniaj zadachi ob istechtnii politropnogo gaza v vfkuum s kosoi stenki [Self-similar solutions to the problem of outflow of a polytropic gas into vacuum from an oblique wall]. Pricladnaja mehanika i tehnicheskaja fizika, 2021, vol. 62, no. 1, pp. 32–42. (in Russian)
12. Bautin S. P., Nikolaev Yu. V. Algoritm postroeniaj proizvolinoi setki hislennogo resheniaj zadachi bezudarnogo szftiaj gaza [An algorithm for constructing an arbitrary grid for the numerical solution of the problem of shockless gas compression]. Matematicheskie struktury i modelirovanie, 2021, vol. 58, no. 2, pp. 53–64. (in Russian)
13. Ponkin E. I. Matematicheskoe opisanie dvuh sposobov gazodinamicheskogo vozdeisnviaj na mishen s ispolzovaniem resheniaj Suckova [Mathematical description of two methods of gas-dynamic impact on the target using the Suchkov solution]. Voprosy atomnoi nauki i tehniki. Seriaj “Matematicheskoe modelirovanie” (in the press). (in Russian)
14. Dolgoleva G. V., Zabrodin A. V. Kumulajcyaj energii v sloistyh sistemah i realizacyaj bezudarnogo szatiaj [Energy accumulation in layered systems and implementation of shockless compression]. Moskva, Fizmatlit. Publ. 2004, 72 p. (in Russian)
15. Brushlinskii K. V. Neustoichivost shodajshesaj sfericheskoi udarnoi volny [Instability of a converging spherical shock wave]. Zurnal vychislitelnoi matematiki i matematicheskoi fiziki, 1982, vol. 2, no. 6, pp. 1468–1497. (in Russian)
16. Sidorov A. F. Nekotorye ocenki stepeni kumulajcyi energii pri ploakom i prostranstvennom szatii gaza [Some Estimates of the Degree of Energy Cumulation in Planar and Spatial Gas Compression]. Doklady AN, 1991, vol. 318, no. 3, pp. 548–552. (in Russian)
Review
For citations:
Bautin S.P., Nikolaev Yu.V., Ponkin E.I. Some Recommendations on Targets for Laser Fusion. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(1):44-50. (In Russ.) https://doi.org/10.56304/S2304487X22010035