Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Уединенные волны обобщенного уравнения Кортевега–де Вриза с учетом дисперсии произвольного порядка

https://doi.org/10.56304/S2304487X2203004X

Аннотация

Рассматривается обобщенное уравнение Кортевега–де Вриза произвольного порядка. Уравнение является обобщением ряда хорошо известных уравнений: знаменитого уравнения Кортевега–де Вриза, уравнения Кавахары и некоторых других уравнений. Доказана теорема о существовании уединенных волн рассматриваемого класса уравнений. Демонстрируется вид уединенной волны для уравнения любого порядка. Конкретные вычисления выполнены для уравнения двенадцатого порядка, для которого представлены ограничения на параметры уравнения для существования уединенных волн.

Об авторах

Н. А. Кудряшов
Национальный исследовательский ядерный университет “МИФИ”
Россия

Москва



Н. В. Ермолаева
Национальный исследовательский ядерный университет; Волгодонский инженерно-технический институт НИЯУ МИФИ
Россия

Москва

Волгодонск, Ростовская обл.

347360



Список литературы

1. Wang G., Kara A.H., Biswas A., Guggilla P., Alzahrani A.K., Belic M.R. Highly dispersive optical solitons in polarization-preserving fibers with Kerr law nonlinearity by Lie symmetry // Physics Letters, Section A: General, Atomic and Solid State Physics, 2022. V. 421. 127768.

2. Kudryashov N.A. Implicit Solitary Waves for One of the Generalized Nolinear Schrödinger Equations // Mathematics, 2021. V. 9. Iss. 23. 3024. https://doi.org/10.3390/math9233024

3. Kudryashov N.A. The generalized Duffing oscillator // Communications in Nonlinear Science and Numerical Simulation, 2021. V. 93. 105526.

4. Zayed E.M.E., Gepreel K.A., El-Horbaty M., Biswas A., Yildirim Y., Alshehri H.M. Highly dispersive optical solitons with complex ginzburg-landau equation having six nonlinear forms // Mathematics, 2021. V. 9. Iss. 24. 3270.

5. Elsherbeny A.M., El-Barkouky R., Seadawy A.R., Ahmed H.M., El-Hassani R.M.I., Arnous A.H. Highly dispersive optical soliton perturbation of Kudryashov’s arbitrary form having sextic-power law refractive index // International Journal of Modern Physics B, 2021. V. 35. Iss. 24. Id. 2150247.

6. Rabie W.B., Seadawy A.R., Ahmed H.M. Highly dispersive Optical solitons to the generalized third-order nonlinear Schrödinger dynamical equation with applications // Optik, 2021. V. 241. 167109.

7. Biswas A., Ekici M., Dakova A., Khan S., Moshokoa S.P., Alshehri H.M., Belic M.R. Highly dispersive optical soliton perturbation with Kudryashov’s sextic-power law nonlinear refractive index by semi-inverse variation // Results in Physics, 2021. V. 27. 104539.

8. Gonzalez-Gaxiola O., Biswas A., Alzahrani A.K., Belic M.R. Highly dispersive optical solitons with a polynomial law of refractive index by Laplace-Adomian decomposition // Journal of Computational Electronics, 2021. V. 20. Iss. 3. P. 1216–1223.

9. Zayed E.M.E., Al-Nowehy A.-G., Alngar M.E.M., Biswas A., Asma M., Ekici M., Alzahrani A.K., Belic M.R. Highly dispersive optical solitons in birefringent fibers with four nonlinear forms using Kudryashov’s approach // Journal of Optics (India), 2021. V. 501. P. 120–131.

10. Gonzalez-Gaxiola O., Biswas A., Asma M., Alzahrani A.K. Highly dispersive optical solitons with non-local law of refractive index by Laplace-Adomian decomposition // Optical and Quantum Electronics, 2021. V. 53. Iss. 1. P. 55.

11. Kudryashov N.A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law // Chaos, Solitons and Fractals, 2020. V. 140. 110202.

12. Kudryashov N.A. Highly Dispersive Optical Solitons of an Equation with Arbitrary Refractive Index // Regular and Chaotic Dynamics, 2020. V. 25. Iss. 6. P. 537–543.

13. Zayed E.M.E., Alngar M.E.M., El-Horbaty M.M., Biswas A., Ekici M., Zhou Q., Khan S., Mallawi F., Belic M.R. Highly dispersive optical solitons in the nonlinear Schrödinger's equations having polynomial law of the refractive index change // Indian Journal of Physics, 2021. V. 95. Iss. 1. P. 109–119.

14. Gonzalez-Gaxiola O., Biswas A., Alshomrani A.S. Highly dispersive optical solitons having Kerr law of refractive index with Laplace-Adomian decomposition // Revista Mexicana de Fisica, 2020. V. 66. Iss. 3. P. 291–296.

15. Kudryashov N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations // Applied Mathematics and Computation, 2020. V. 371. 124972.

16. Kudryashov N.A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrodinger equation // Optik, 2020. V. 206. 164335.

17. Kudryashov N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities // Optik, 2020. V. 212. 164750.

18. Kohl R.W., Biswas A., Ekici M., Yildirim Y., Triki H., Alshomrani A.S., Belic M.R. Highly dispersive optical soliton perturbation with quadratic-cubic refractive index by semi-inverse variational principle // Optik, 2020. V. 206. 163621.

19. Kohl R.W., Biswas A., Ekici M., Zhou, Q., Khan S., Alshomrani A.S., Belic M.R. Highly dispersive optical soliton perturbation with Kerr law by semi-inverse variational principle // Optik, 2019. V. 199. 163226.

20. Biswas A., Sonmezoglu A., Ekici M., Alshomrani A.S., Belic M.R. Highly dispersive singular optical solitons with Kerr law nonlinearity by Jacobi’s elliptic ds function expansion// Optik, 2019. V. 192. 162954.

21. Biswas A., Ekici M., Sonmezoglu A., Belic M.R. Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion // Optik, 2019. V. 189. P. 109–120.

22. Kudryashov N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations // Optik, 2020. V. 206. 163550.9

23. Kudryashov N.A. Solitary wave solutions of hierarchy with non-localnonlinearity // Applied Mathematics Letters, 2020. V. 103. 106155.

24. Kudryashov N.A. Method for finding optical solitons of generalized nonlinear Schrödinger equations // Optik, 2022. V. 261. 169163.

25. Kudryashov N.A. First integrals and general solution of the complex Ginzburg-Landau equation // Applied Mathematics and Computation, 2020. V. 386. 125407.

26. Sain S., Ghose-Choudhury A., Garai S. Solitary wave solutions for the KdV-type equations in plasma: a new approach with the Kudryashov function // European Physical Journal Plus, 2021. V. 136. Iss. 2. P. 226.

27. Ozisik M., Secer A., Bayram M., Aydin H. An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices // Optik, 2022. V. 265. 169499.


Рецензия

Для цитирования:


Кудряшов Н.А., Ермолаева Н.В. Уединенные волны обобщенного уравнения Кортевега–де Вриза с учетом дисперсии произвольного порядка. Вестник НИЯУ МИФИ. 2022;11(3):218–222. https://doi.org/10.56304/S2304487X2203004X

For citation:


Kudryashov N.A., Ermolaeva N.V. Solitary Waves of the Generalized Korteweg–de Vries Equation Including a Dispersion of an Arbitrary Order. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(3):218–222. (In Russ.) https://doi.org/10.56304/S2304487X2203004X

Просмотров: 124


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)