Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Investigation of the Possibility of Three-Dimensional Printing Boluses for Gamma Therapy

https://doi.org/10.56304/S2304487X22020109

Abstract

The application of radiation therapy in combination with other methods for cancer treatment allows achieving good therapeutic results. It is necessary to form the optimal dose distribution in the target volume for the effective implementation of radiation therapy procedures. Boluses are special devices made of tissue-equivalent materials and placed on the skin surface. Their applications allow changing the dose distribution in the irradiated volume in accordance with the clinical task. This is relevant to the photon irradiation of tumors located close to the skin surface. The use of standard materials such as wax, gelatin, and various gels to fabricate boluses is limited because of the change in the shape and size of such samples during operation. In this work, the possibility of using 3D-printing techniques to fabricate boluses for gamma therapy is explored. For this purpose, a numerical model has been developed involving the real parameters of the gamma radiation medical source and the plastic properties. The calculated and experimental percentage depth dose distributions in plastic, dose values behind plastic samples of different heights, which simulate the simple bolus, and dose distribution behind a printed plastic sample, which simulates a bolus with a complex geometry, have been obtained. The numerical simulation data and experimental results are in good agreement. The work results indicate that the developed numerical model is suitable for calculating the geometric parameters of plastic boluses made by 3D-printing. It has been shown that ABS plastic boluses are applicable for the formation of medical gamma beams.

About the Authors

A. A. Sorokina
National Research Tomsk Polytechnic University
Russian Federation

Tomsk, 634050 



A. A. Bushmina
National Research Tomsk Polytechnic University
Russian Federation

Tomsk, 634050 



A. A. Grigorieva
National Research Tomsk Polytechnic University
Russian Federation

Tomsk, 634050 



A. A. Bulavskaya
National Research Tomsk Polytechnic University
Russian Federation

Tomsk, 634050 



I. A. Miloichikova
National Research Tomsk Polytechnic University; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Tomsk, 634050 

Tomsk, 634009



S. G. Stuchebrov
National Research Tomsk Polytechnic University
Russian Federation

Tomsk, 634050 



References

1. London. L. Global battle against cancer won’t be wonwith treatment alone – effective prevention measures urgently needed to prevent cancer crisis. Central European journal of public health, 2018, vol. 22, no. 1, pp. 23–28.

2. Klimanov V.A. Radiobiologicheskoe i dozimetricheskoe planirovanie luchevoj i radionuklidnoj terapii. CHast’ 1. Radiobiologicheskie osnovy luchevoj terapii. Radiobiologicheskoe i dozimetricheskoe planirovanie distancionnoj luchevoj terapii puchkami tormoznogo i gammaizlucheniya i elektronami [Radiobiological and dosimetric planning of radiation and radionuclide therapy. Part 1. Radiobiological foundations of radiation therapy. Radiobiological and dosimetric planning of remote radiation therapy with brake and gamma radiation beams and electrons]. Moscow, MEPhI Publ., 2011. 500 p.

3. Kudchadker R.J. et al. Utilization of custom electronbolus in head and neck radiotherapy. Journal of applied clinical medical physics, 2003, vol. 4, no. 4, pp. 321– 333.

4. Khan F.M., Gibbons J.P. Khan’s the physics of radiation therapy. Fifth edition. Lippincott Williams & Wilkins, 2014. 572 p.

5. Boone M.L., Jardine J.H., Wright A.E., Tapley N.D.High-energy electron dose perturbations in regions of tissue heterogeneity. I. In vivo dosimetry. Radiology, 1967, vol. 88, no. 6, pp. 1136–1145.

6. Mahdavi H., Jabbari K., Roayaei M. Evaluation of various boluses in dose distribution for electron therapy of the chest wall with an inward defect. Journal of Medical Physics/Association of Medical Physicists of India, 2016, vol. 41, no. 1, pp. 38.

7. Khan F.M., Moore V.C., Levitt S.H. Field shaping inelectron beam therapy. The British journal of radiology, 1976, vol. 49, no. 586, pp. 883–886.

8. Lu Y., Song J., Yao X., An M., Shi Q., Huang X. 3DPrinting Polymer-based Bolus Used for Radiotherapy. International Journal of Bioprinting, 2021, vol. 7, no. 4, pp. 27–42.

9. Attix F.H. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008, 628 p.

10. Verhaegen F., Granton P., Tryggestad E. Small animalradiotherapy research platforms. Physics in Medicine & Biology, 2011, vol. 56, no. 12, pp. R55–R83.

11. Koutsouvelis N., Rouzaud M., Dubouloz A., Nouet P.,Jaccard M., Garibotto V., Tournier B.B., Zilli T., Dipasquale G. 3D-printing for dosimetric optimization and quality assurance in small animal irradiations using megavoltage X-rays. Zeitschrift für Medizinische Physik, 2020, vol. 3, no. 30, pp. 227–235.

12. Albantow C., Hargrave C., Brown A., Halsall C. Comparison of 3D-printed nose bolus to traditional wax bolus for cost-effectiveness, volumetric accuracy and dosimetric effect. Journal of Medical Radiation Sciences, 2020, vol. 1, no. 67, pp. 54–63.

13. BOLX™ Radiation Bolus Products. Available at: https://www.actionproducts.com/resources/downloads/bolxtm-radiation-bolus-products.html. (accessed 27.06.2022)

14. Vyas V., Palmer L., Mudge R., Jiang R., Fleck A.,Schaly B., Osei E., Charland P. On bolus for megavoltage photon and electron radiation therapy. Medical Dosimetry, 2013, vol. 38, no. 3, pp. 268–273.

15. Desrosiers M., DeWerd L., Deye J., Lindsay P., Murphy MK., Mitch M., Macchiarini F., Stojadinovic S., Stone H. The importance of dosimetry standardization in radiobiology. Journal of research of the National Institute of Standards and Technology, 2013. vol. 118, pp. 403–418.

16. Pedersen K.H., Kunugi K.A., Hammer C.G., Culberson W.S., DeWerd L.A. Radiation biology irradiator dose verification survey. Radiation Research, 2016, vol. 185, no. 2, pp. 163–168.

17. Superflat Bolus. Available at: https://www.rpdinc.com/superflab-bolus-05cm-thick-x-30cmsquare-1696.html.(accessed 27.06.2022)

18. Robar J.L., Moran K., Allan J., Clancey J., Joseph T.,Chytyk-Praznik K., MacDonald RL., Lincoln J., Sadeghi P., Rutledge R. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy. Practical Radiation Oncology, 2018, vol. 4, no. 8, pp. 221–229.

19. Original PRUSA I3 MK3. Available at: https://3dtoday.ru/3d-printers/prusa-research/original-prusa-i3mk3. (accessed 27.06.2022)

20. ABS-plastics company Bestfilament. Available at: https://bestfilament.ru/abs-0.5-1.75-natural/ (accessed 27.06.2022)

21. Bespalov V.I. Komp’yuternaya laboratoriya (versiya 9.6) [Computer Lab (version 9.6)]. Tomsk, TPU Publ., 2015, 115 p.

22. Andreo P. Monte Carlo simulations in radiotherapydosimetry. Radiation Oncology, 2018, vol. 13, no. 1, pp. 1–15.

23. Miloichikova I.A., Stuchebrov S.G., Verigin D.A.,Krasnykh A.A., Danilova I.B. Simulation of the X-Ray Beam Absorption by the ABS-Plastic Filled with Different Metallic Additives. Journal of Physics: Conference Series. IOP Publishing, 2016, vol. 769, no. 1, pp. 1–6.

24. Miloichikova I.A., Bulavskaya A.A., Cherepennikov Y.M.,Gavrikov B.M., Gargioni E., Belousov D.A., Stuchebrov S.G. Feasibility of clinical electron beam formation using polymer materials produced by fused deposition modeling. Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics, 2019, vol. 64, pp. 188–194.

25. Research Institute of Oncology of Tomsk NIMC. Available at: https://onco.tnimc.ru/ (accessed 27.06.2022)

26. Theratron Equinox 80. Available at: http://www.theratronics.ca/product_equinox.html. (accessed 27.06.2022)

27. Phantom SP33. Available at: https://goo.su/aDMJ. (accessed 27.06.2022)

28. Film dosimeter GafChromic EBT3. Available at: http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp. (accessed 27.06.2022)

29. Bulavskaya A.A., Cherepennikov Y.M., Grigorieva A.A.,Miloichikova I.A., Startseva Z.A., Stuchebrov S.G., Velikaya V.V. Theoretical study of the dose measurements reliability with longitudinally arranged dosimetry films in materials with different densities. Journal of Instrumentation, 2020, vol. 15, no. 03, pp. C03037.

30. Clinical dosimeter Dose-1. Available at: https://all-pribors.ru/opisanie/26714-04-dose-1-25123. (accessed 27.06.2022)

31. Ionization chamber FC65-P. Available at: https://www.iba-dosimetry.com/product/fc65-g-fc65-pionization-chambers/ (accessed 27.06.2022)

32. Efficient Protocols for Accurate Radiochromic Film Calibration and Dosimetry. Available at: http://www.gafchromic.com/documents/Efficient%20Protocols%20for%20Calibration%20and%20Dosimetry.pdf. (accessed 27.06.2022)


Review

For citations:


Sorokina A.A., Bushmina A.A., Grigorieva A.A., Bulavskaya A.A., Miloichikova I.A., Stuchebrov S.G. Investigation of the Possibility of Three-Dimensional Printing Boluses for Gamma Therapy. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(2):178–185. (In Russ.) https://doi.org/10.56304/S2304487X22020109

Views: 303


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)