Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

On the Reduction of the Magnetic Gas Dynamics System of Equations to Systems of Ordinary Differential Equations

https://doi.org/10.56304/S2304487X22020122

Abstract

A magnetic gas dynamics system of equations including the magnetic viscosity is considered. To study this system, systems of partial differential equations is reduced to systems of ordinary differential equations using two approaches. In the first approach, the independent variable $\psi$ of systems of ordinary differential equations  is such that the equation ψ(x, y, z, t) = const defines the level surface of the solutions of the original system (components of the velocity vector and components of the magnetic field strength). In the second approach, irrotational motions of plasma are considered, in which the components of the velocity are derivatives of some function Q = Q(x, y, z, t). In this case, the equation ψ(x, y, z, t) = const defines the level surface of the function Q = Q(x, y, z, t) and the components of the magnetic field vector. Some exact solutions of the considered system of partial differential equations are found. It is shown that functional arbitrariness is preserved in each of the considered approaches when determining level surfaces. The available functional arbitrariness is used in the problem of location of streamlines of the potential plasma flow and magnetic field lines on a certain surface. An algorithm for obtaining such a surface is described.

About the Authors

O. N. Ul’yanov
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg, 620108



L. I. Rubina
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg, 620108



References

1. Sorokina E.A., Ilgisonis V.I. Uravnenie ravnovesiyaplazmy v magnitnom pole s trekhmernymi magnitnymi poverhnostyami. [Equations of plasma equilibrium in a magnetic field with three-dimensional magnetic surfaces]. Plasma Physics Reports, 2019, vol. 45, issue 12, pp. 1093–1098. https://doi.org/10.1134/S1063780X19120080

2. Brushlinskii K.V. Matematicheskie modeli plazmy vproektah Morozova [Mathematical models of plasma in Morozov’s projects]. Plasma Physics Reports, 2019, vol. 45, issue 1, pp. 33–45. https://doi.org/10.1134/S1063780X19010021

3. Brushlinskii K.V. Chislennye modeli reshenij ionizuyushchegosya gaza [Numerical models of ionizing gas flows]. In: Entsiklopediya nizkotemperaturnoy plazmy (Encyclopedia of low-temperature plasma / ed. V.E. Fortov.), ser. B, vol. VII-1, part. 2. Moscow, YaANUS-K Publ., 2008. pp. 84–90. (in Russian)

4. Kalitkin N.N., Kostomarov D.P. Matematicheskiemodeli fiziki plazmy (obzor) [Mathematical models of plasma physics (a survey)]. Matematicheskoe Modelirovanie, 2006, vol. 18, issue 11, pp. 67–94. (in Russian)

5. Meleshko S.V., Moyo S., Webb G.M. Solutions of generalized simple wave type of magnetic fluid, Communications in Nonlinear Science and Numerical Simulation, 2021, vol. 103. https://doi.org/10.1016/j.cnsns.2021.105991

6. Pustovitov V.D., Chukashev N.V. Analiticheskoe reshenie vneshnej zadachi ravnovesiya plazmy ellipticheskogo secheniya v Tokomake. [Analytical solution to external equilibrium problem for plasma with elliptic cross section in a Tokamak]. Plasma Physics Reports, 2021, vol. 47, issue 10, pp. 956–966. https://doi.org/10.1134/S1063780X2110007X

7. Ledentsov L.S., Somov B.V. Discontinuous plasmaflows in magnetohydrodynamics and in the physics of magnetic reconnection, Physics-Uspekhi, 2015, vol. 58, issue 2, pp. 107–133. https://doi.org/10.3367/UFNe.0185.201502a.0113

8. Ulyanov O.N., Rubina L.I. O redukcii odnoj sistemyuravnenij v chastnyh proizvodnyh k sistemah obyknovennyh differencial’nyh uravnenij. [On the reduction of one system of partial differential equations to systems of ordinary differential equations]. Vestnik NlYaU MIFI, 2021, vol. 10, no. 5, pp. 418–428. https://doi.org/10.1134/S2304487X21050102 (in Russian)

9. Ulyanov O.N., Rubina L.I. O nekotorykh resheniyakhodnoy sistemy uravneniy plazmostatiki. [On some solutions of one system of plasmostatics equations]. Vestnik NlYaU MIFI, 2021, vol. 10, no. 1, pp. 12–18. https://doi.org/10.1134/S2304487X20060103 (in Russian).

10. Polyanin A.D., Zhurov A.I. Metody razdeleniya peremennykh i tochnyye resheniya nelineynykh uravneniy matematicheskoy fiziki [Methods of Separation of Variables and Exact Solutions to Nonlinear Equations of Mathematical Physics], Moscow, Izdatel’stvo “IPMekh RAN” Publ., 2020. 384 p. (in Russian)

11. Clarkson P.A., Kruskal M.D. New similarity reductions of the Boussinesq equation, J. Math. Phys. 1989, vol. 30, issue 10, pp. 2201–2213.

12. Clarkson P.A., Ludlow D.K., Priestley T.J. The classical, direct, and nonclassical methods for symmetry reductions of nonlinear partial differential equations, Methods and Applications of Analysis, 1997, vol. 4, issue 2, pp. 173–195.

13. Sidorov A.F., Shapeev V.P., Yanenko N.N. Metod differentsial’nykh svyazey i yego prilozheniya v gazovoy dinamike (Method of differential constraints and its applications in gas dynamics), Novosibirsk: Nauka Publ., 1984. 272 p. (in Russian)

14. Ovsiannikov L.V. Group Analysis of Differential Equations. N. Y.: Academic Press, 1982. 416 p.

15. Fushchych W. Ansatz ’95, Journal of Nonlinear Mathematical Physics, 1995, vol. 2, issue 3–4. pp. 216–235. https://doi.org/10.2991/jnmp.1995.2.3-4.2

16. Courant R., Hilbert D. Metody matematicheskoy fiziki. vol. II: Uravneniya s chastnymi proizvodnymi. [Methods of mathematical physics. vol. 2: Partial differential equations]. Moscow, Mir Publ., 1964, 830 p.

17. Jejhenvald A.A. Teoreticheskaya fizika, Chast 1. Teoriya polya (Theoretical physics. Pt.1 Field theory), Moscow; Leningrad, Gosudarstvennoe izdatel’stvo Publ., 1926, 272 p. (in Russian)


Review

For citations:


Ul’yanov O.N., Rubina L.I. On the Reduction of the Magnetic Gas Dynamics System of Equations to Systems of Ordinary Differential Equations. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(2):122–132. (In Russ.) https://doi.org/10.56304/S2304487X22020122

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)