Exact Solutions of Nonlinear Telegraph Equations with Variable Coefficients
https://doi.org/10.56304/S2304487X1902010X
Abstract
Various classes of nonlinear telegraph equations with variable coefficients c(x)un + d(x)uτ = [a(x)ux]x + b(x)ux + p(x)ux + p(x)f(u), which allow exact solutions with a functional separation of variables of the form u = U(z), z = ϕ , (x, t ). , have been described. It has been shown that the source function f(u) and any four of the five coefficients a(x), b(x), c(x), d(x), p(x) of these equations can be chosen arbitrarily, and the remaining coefficient is expressed in terms of them. The properties have been studied of the overdetermined system of differential equations for the function ф(x, t) and some its solutions have been obtained. Examples of particular equations and their exact solutions are given. Some exact generalized traveling-wave solutions of more complex nonlinear telegraph equations with delay of the form c(x)un + d(x)uτ = [a(x)ux]x + b(x)ux + p(x)ux + p(x)f(u, w), w = u(x,t - τ), where τ > 0 is the delay time and f(u, w) is an arbitrary function of two arguments, are also obtained.
About the Author
A. D. PolyaninRussian Federation
119526
115409
105005
Moscow
References
1. Ames W. F., Lohner J. R., Adams E. Group properties of // Int. J. Non-Linear Mech. 1981. V. 16. № 5–6. P. 439–447.
2. Clarkson P. A., McLeod J. B., Olver P. J., Ramani R. Integrability of Klein–Gordon equations // SIAM J. Math. Anal. 1986. V. 17. P. 798–802.
3. Oron A., Rosenau P. Some symmetries of the nonlinear heat and wave equations // Phys. Lett. A. 1986. V. 118. P. 172–176.
4. Pucci E., Salvatori M. C. Group properties of a class of semilinear hyperbolic equations // Int. J. Non-Linear Mech. 1986. V. 21. P. 147–155.
5. Grundland A. M., Infeld E. A family of non-linear Klein-Gordon equations and their solutions // J. Math. Phys. 1992. V. 33. P. 2498–2503.
6. Ibragimov N. H. (Editor). CRC Handbook of Lie Group Analysis of Differential Equations. Symmetries, Exact solutions and Conservation Laws, Vol. 1. Boca Raton: CRC Press, 1994.
7. Zhdanov R. Z. Separation of variables in the non-linear wave equation // J. Phys. A. 1994. V. 27. P. L291–L297.
8. Zaitsev V. F., Polyanin A. D., Handbook of Partial Differential Equations: Exact Solutions, Moscow, International Program of Education, 1996 (in Russian).
9. Andreev V. K., Kaptsov O. V., Pukhnachov V. V., Rodionov A. A. Applications of Group-Theoretical Methods in Hydrodynamics. Dordrecht: Kluwer, 1998.
10. Sophocleous C., Kingston J. G. Cyclic symmetries of one-dimensional non-linear wave equations // Int. J. Non-Linear Mech. 1999. V. 34. P. 531–543.
11. Zaitsev V. F., Polyanin A. D., Exact solutions and transformations of nonlinear heat and wave equations, Dokl. Math., 2001, vol. 64, no. 3, pp. 416–420.
12. Estévez P. G., Qu C. Z., Separation of variables in non-linear wave equations with variable wave speed, Theor. Math. Phys., 2002, vol. 133, pp. 1490–1497.
13. Polyanin A. D, Zaitsev V. F., Handbook of nonlinear equations of mathematical physics, Moscow: Fizmatlit, 2002 (in Russian).
14. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd Edition. Boca Raton: CRC Press, 2004.
15. Polyanin A. D., Zaitsev V. F., Zhurov A. I., Solution methods for nonlinear equations of mathematical physics and mechanics, Moscow: Fizmatlit, 2005 (in Russian).
16. Bluman G. W., Cheviakov A. F. Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation // J. Math. Anal. Appl. 2007. V. 333. P. 93–111.
17. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd Edition. Boca Raton: CRC Press, 2012.
18. Hu J., Qu C. Functionally separable solutions to non-linear wave equations by group foliation method // J. Math. Anal. Appl. 2007. V. 330. P. 298–311.
19. Huang D. J., Zhou S. Group properties of generalized quasi-linear wave equations // J. Math. Anal. Appl. 2010. V. 366. P. 460–472.
20. Huang D. J., Zhu Y., Yang Q. Reduction operators and exact solutions of variable coefficient nonlinear wave equations with power nonlinearities // Symmetry. 2017. V. 9. № 3.
21. Bluman G. W., Temuerchaolu, Sahadevan R. Local and nonlocal symmetries for nonlinear telegraph equation // J. Math. Phys. 2005. V. 46. Article ID 023505.
22. Huang D. J., Ivanova N. M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations // J. Math. Phys. 2007. V. 48, Article ID 073507.
23. Huang D. J., Zhou S. Group-theoretical analysis of variable coefficient nonlinear telegraph equations // Acta Appl. Math. 2012. V. 117. № 1. P. 135–183.
24. Pucci E. Group analysis of the equation // Riv. Mat. Univ. Parma. 1987. V. 12. № 4. P. 71–87.
25. Ibragimov N. H., Torrisi M., Valenti A. Preliminary group classification of equations // J. Math. Phys. 1991. V. 32. P. 2988–2995.
26. Ibragimov N. H., Khabirov S. V. Contact transformation group classification of nonlinear wave equations // Nonlin. Dyn. 2000. V. 22. P. 61–71.
27. Anco S. C., Liu S. Exact solutions of semilinear radial wave equations in dimensions // J. Math. Anal. Appl. 2004. V. 297. P. 317–342.
28. Gandarias M. L., Torrisi M., Valenti A. Symmetry classification and optimal systems of a non-linear wave equation // Int. J. Non-Linear Mech. 2004. V. 39. P. 389–398.
29. Lahno V., Zhdanov R., Magda O. Group classification and exact solutions of nonlinear wave equations // Acta Appl. Math. 2006. V. 91. P. 253–313.
30. Polyanin A. D., Zhurov A. I. Generalized and functional separable solutions to nonlinear delay Klein–Gordon equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 8. P. 2676–2689.
31. Long F.-S., Meleshko S. V. On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay // Math. Meth. Appl. Sci. 2016. V. 39. № 12. P. 3255–3270.
32. Dorodnitsyn V. A., On invariant solutions of the non-linear heat equation with a source, Zhurnal Vychislite’noi Matematiki i Matematicheskoi Fiziki, 1982, vol. 22, no. 6, pp. 1393–1400 (in Russian).
33. Kudryashov N. A. On exact solutions of families of Fisher equations // Theor. Math. Phys. 1993. V. 94. № 2. P. 211–218.
34. Galaktionov V. A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions // Nonlinear Anal. Theory, Methods and Appl. 1994. V. 23. P. 1595–621.
35. Doyle Ph. W., Vassiliou P. J. Separation of variables for the 1-dimensional non-linear diffusion equation // Int. J. Non-Linear Mech. 1998. V. 33. № 2. P. 315–326.
36. Hood S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function – generalizations of Clarkson’s and Kruskal’s method // IMA J. Appl. Math. 2000. V. 64. № 3. P. 223–244.
37. Cherniha R. M., Pliukhin O. New conditional symmetries and exact solutions of nonlinear reaction–diffusion–convection equations // J. Physics A: Math. Theor. 2007. V. 40. № 33. P. 10049–10070.
38. Cherniha R. M., Pliukhin O. New conditional symmetries and exact solutions of reaction–diffusion–convection equations with exponential nonlinearities // J. Math. Anal. Appl. 2013. V. 403. P. 23–37.
39. Cherniha R., Serov M., Pliukhin O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications. Boca Raton: Chapman & Hall/CRC Press, 2018.
40. Vaneeva O. O., Johnpillai, A. G., Popovycha R. O., Sophocleous C. Extended group analysis of variable coefficient reaction–diffusion equations with power nonlinearities // J. Math. Anal. Appl. 2007. V. 330. № 2. P. 1363–1386.
41. Vaneeva O. O., Popovych R. O., Sophocleous C. Extended group analysis of variable coefficient reaction–diffusion equations with exponential nonlinearities // J. Math. Anal. Appl. 2012. V. 396. P. 225–242.
42. Popovych R. O., Ivanova N. M. New results on group classification of nonlinear diffusion-convection equations // J. Physics A: Math. General. 2004. V. 37. № 30. P. 7547–7565.
43. Ivanova N. M., Sophocleous C. On the group classification of variable-coefficient nonlinear diffusion-convection equations // J. Comput. Appl. Math. 2006. V. 197. № 2. P. 322–344.
44. Ivanova N. M. Exact solutions of diffusion-convection equations // Dynamics of PDE. 2008. V. 5. № 2. P. 139–171.
45. Vaneeva O. O., Popovych R. O., Sophocleous C. Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification // Lobachevskii J. Math. 2010. V. 31. № 2. P. 100–122.
46. Jia H., Zhao W. X. X., Li Z. Separation of variables and exact solutions to nonlinear diffusion equations with - dependent convection and absorption // J. Math. Anal. Appl. 2008. V. 339. № 982–995.
47. Polyanin A. D. Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients // Appl. Math. Comput. 2019. V. 347. pp. 282–292.
48. Meleshko S. V., Moyo S. On the complete group classification of the reaction–diffusion equation with a delay // J. Math. Anal. Appl. 2008. V. 338. P. 448–466.
49. Polyanin A. D., Zhurov A. I. Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 409–416.
50. Polyanin A. D., Zhurov A. I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 417–430.
51. Polyanin A. D., Zhurov A. I. New generalized and functional separable solutions to non-linear delay reaction-diffusion equations // Int. J. Non-Linear Mech. 2014. V. 59. P. 16–22.
52. Polyanin A. D., Zhurov A. I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions // Appl. Math. Letters. 2014. V. 37. P. 43–48.
53. Polyanin A. D., Zhurov A. I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients // Int. J. Non-Linear Mech. 2014. V. 67. P. 267–277.
54. Polyanin A. D. Generalized traveling-wave solutions of nonlinear reaction–diffusion equations with delay and variable coefficients // Appl. Math. Letters. 2019. V. 90. P. 49–53.
55. Polyanin A. D., Zaitsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition. Boca Raton: Chapman & Hall/CRC Press, 2003.
56. Polyanin A. D., Zaitsev V. F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Boca Raton: CRC Press, 2018.
57. Polyanin A. D., Nazaikinskii V. E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition. Boca Raton: CRC Press, 2016.
Review
For citations:
Polyanin A.D. Exact Solutions of Nonlinear Telegraph Equations with Variable Coefficients. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(3):213-225. (In Russ.) https://doi.org/10.56304/S2304487X1902010X