METHODOLOGY OF TESTING MULTI-CHANNEL HUMAN-MACHINE INTERFACE
https://doi.org/10.26583/vestnik.2023.266
Abstract
Currently, the research and development of an effective human-machine interface for robotic complexes is relevant. To increase the efficiency of controlling a robotic complex, several interfaces operating in parallel mode can be used. In particular, there is a multi-channel human-machine interface, which involves the interaction of several interfaces. There are various algorithms for the interaction of several interfaces aimed at selecting a command that needs to be sent to the robotic complex at a given time. To justify the feasibility of the interaction algorithms, it is necessary to apply a methodology for testing a multi-channel human-machine interface. This article considers different approaches to the implementation of this methodology: based on the statistical test method and based on modeling of results. Based on the results of statistics collection, confusion matrices are formed. In this article, different types of confusion matrices are considered, as well as metrics that can be used to evaluate the efficiency of the human-machine interface taking into account type I and II errors. In the case of modeling the results, this article are considered modeling based on the type of distribution and modeling based on generating a confusion matrix. Simulation of results can be used when it is impossible to collect large statistics, to check the feasibility of using interaction algorithms.
References
1. Bocharov N.A., Paramonov N.B., Slavin O.A., Suminov K.A. Matematicheskie i programmnye modeli zadach tekhnicheskogo zreniya robototekhnicheskih kompleksov na osnove mikroprocessorov «El'brus». [Mathematical and software models of technical vision tasks of robotic complexes based on «Elbrus» microprocessors]. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS), 2022. Vol. 34. No. 6. Pp. 85–100 (in Russian). DOI: 10.15514/ ISPRAS-2022-34(6)-6.
2. Bocharov N.A. Issledovanie podhodov k unifikacii bortovyh vychislitel'nyh kompleksov [Study of approaches to the unification of on-board computers]. Izvestiya SFedU. Engineering Sciences, 2023. No. 1(231). Pp. 275–287 (in Russian) DOI: 10.18522/2311-3103-2023-1-275-287.
3. Bocharov N.A., Paramonov N.B., Slavin O.A., Yanko D.V. Otsenka perspektiv ispol'zovaniya vychislitel'nykh sredstv semeystva «El'brus» pri realizatsii algoritmov raspoznavaniya v sovremennykh robototekhnicheskikh kompleksakh [Evaluation of the prospects for the use of computing tools of the «Elbrus» family in the implementation of recognition algorithms in modern robotic complexes]. Voprosy radioelektroniki [Questions of radio electronics], 2018. No. 2. Pp. 99–105 (in Russian).
4. Bocharov N.A., Paramonov N.B., Sapachev I.D. Realizaciya algoritmov gruppovogo upravleniya na yazyke Java v srede OS «El'brus». [Implementation of algorithms of group control on Java language in OS «Elbrus» environment]. Sovremennye informacionnye tekhnologii i IT-obrazovanie [Modern information technologies and IT education], 2016. Vol. 12. No. 1. Pp. 0108–114 (in Russian).
5. Baranov I.A. Cheloveko-mashinnyj interfejs kon-trolya i upravleniya prikladnymi programmami dlya VK na baze mikroprocessorov SPARC i «El'brus» v ASUTP. [Human-machine interface for monitoring and managing application programs for computers based on SPARC and Elbrus microprocessors in automated process control systems]. Voprosy radioelektroniki. [Questions of radio electronics], 2013. Vol. 4. No. 3. Pp. 201–212 (in Russian).
6. Egorov G.A., Belonogov A.D., Ostrovskij M.A., Rejzman Ya. A. Realizaciya cheloveko-mashinnogo interfejsa v integrirovannoj tekhnologii proektirovaniya avtomatizirovannyh sistem kontrolya i upravleniya. [Implementation of human-machine interface in integrated technology for designing automated monitoring and control systems]. Mekhatronika, avtomatizaciya, upravlenie. [Mechatronics, automation, control], 2011. No. 7. Pp. 56–62 (in Russian).
7. Gridnev A.A., Voznenko T.I., Chepin E.V. The decision-making system for a multi-channel robotic device control. Procedia computer science, 2018. Vol. 123. Pp. 149–154. DOI: 10.1016/j.procs.2018.01.024.
8. Chaban L.N. Metody i algoritmy raspoznavaniya obrazov v avtomatizirovannom deshifrirovanii dannyh distancionnogo zondirovaniya. [Methods and algorithms for pattern recognition in automated interpretation of remote sensing data]. Moscow, MIIGAiK Publ., 2016. 94 p. (in Russian).
9. Starovoitov V.V., Golub Yu.I. Ob ocenke rezul'tatov klassifikacii nesbalansirovannyh dannyh po matrice oshibok [About the confusion-matrix-based assessment of the results of imbalanced data classification]. Informatics, 2021. Vol. 18. No. 1. Pp. 61–71 (in Russian) DOI: 10.37661/10.37661/1816-0301-2021-18-1-61-71.
10. Liu J., Zhong L., Wickramasuriya J., Vasude-van V. uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing, 2009. Vol. 5. No. 6. Pp. 657–675. DOI: 10.1016/j.pmcj.2009.07.007
11. Abdelnasser H., Youssef M., Harras K.A. Wigest: A ubiquitous wifi-based gesture recognition system. 2015 IEEE conference on computer communications (INFOCOM), IEEE, 2015. Pp. 1472–1480. DOI: 10.1109/INFOCOM.2015.7218525
12. Nuzzi C., Pasinetti S., Lancini M., Docchio F., Sansoni G. Deep learning-based hand gesture recognition for collaborative robots. IEEE Instrumentation & Measurement Magazine, 2019. Vol. 22. No. 2. Pp. 44–51. DOI: 10.1109/MIM.2019.8674634
13. Miroshnik I.V. Soglasovannoe upravlenie mnogo-kanal'nymi sistemami. [Coordinated control of multi-channel systems]. Leningrad, Energoatomizdat Publ., 1990. 128 p. (in Russian).
14. Müller A.C., Guido S. Vvedenie v mashinnoe obuchenie s pomoshch'yu Python. Rukovodstvo dlya specialistov po rabote s dannymi. [Introduction to machine learning with Python: a guide for data scientists]. Saint Petersberg, OOO Al'fa-kniga Publ., 2016. 398 p. (in Russian).
15. Petrova A.I., Voznenko T.I., Chepin E.V. The impact of artifacts on the BCI control channel for a robotic wheelchair. Advanced Technologies in Robotics and Intelligent Systems. Mechanisms and Machine Science. Springer, Cham, 2020. Vol. 80. Pp. 105–111. DOI: 10.1007/978-3-030-33491-8_12.
16. Voznenko T.I., Gridnev A.A., Kudryavtsev K.Y., Chepin E.V. The decomposition method of multi-channel control system based on extended bci for a robotic wheelchair. Biologically Inspired Cognitive Architectures Meeting, Springer, Cham, 2019. Pp. 562–567. DOI: 10.1007/978-3-030-25719-4_73.
17. Cantrell D.W. Pythagorean means // Math World, 2003. Available at: https://mathworld.wolfram.com/ PythagoreanMeans. html (accessed 24.07.2023).
18. Bishop C.M. Raspoznavanie obrazov i mashinnoe obuchenie. [Pattern Recognition and Machine Learning]. Moscow: Vil'yams Publ., 2006. 738 p. (in Russian).
19. Zhang L., Wang C., Arinez J., Biller S. Transient analysis of Bernoulli serial lines: Performance evaluation and system-theoretic properties. IIE Transactions, 2013. Vol. 45. No. 5. Pp. 528–543. DOI: 10.1080/ 0740817X.2012.721946.
20. Naebulharam R., Zhang L. Bernoulli serial lines with deteriorating product quality: performance evaluation and system-theoretic properties. International Journal of Production Research, 2014. Vol. 52. No. 5. Pp. 1479–1494. DOI: 10.1080/00207543.2013.847982.
21. Kibzun A.I., Goryainova E.R., Naumov A.V., Sirotin A.N. Teoriya veroyatnostei i matematicheskaya statistika: bazovyi kurs s primerami i zadachami. [Probability theory and mathematical statistics. Basic course with examples and tasks]. Moscow, Fizmatlit Publ., 2002. 224 p. (in Russian).
22. Voznenko T.I., Gridnev A.A., Chepin E.V., Kudryavtsev K.Y. The command interpretation in decomposition method of multi-channel control for a robotic device. Procedia Computer Science, 2020. Vol. 169. Pp. 152–157. DOI: 10.1016/j.procs.2020. 02.127
Review
For citations:
Voznenko T.I. METHODOLOGY OF TESTING MULTI-CHANNEL HUMAN-MACHINE INTERFACE. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(4):243-250. (In Russ.) https://doi.org/10.26583/vestnik.2023.266