EXPERIMENTAL STUDY OF THE SUPRAMOLECULAR SERUM ALBUMIN STRUCTURE
https://doi.org/10.26583/vestnik.2023.284
EDN: BPBNME
Abstract
The paper presents the results of experimental studies of water-salt solutions of serum albumin (SAC), which is considered as an analogue of body fluids. The observed structural effects in dehydrated films are considered taking into account the concept of the supramolecular organization of the polymer body and its multilevel structure. To study the samples, a single complex technique was developed and tested, including studies of the supramolecular structure of the entire drop at the optical level (microlevel) and the morphology of the globular structural elements of the albumin film (nanolevel) by atomic force microscopy (AFM). Processing of SAC facies with the help of the Morpho hardware and software complex allowed us to establish the dependence of the NM facies on the albumin concentration. At the optical level, it was possible to observe a complex-step mechanism of changes in the supramolecular structure of water-salt facies of albumin. The study showed that with an increase in protein concentration, the area of the crystallization area of dendrites decreases. At a concentration of 10 % SAC, a structural transition occurs: the dendritic-fractal morphology is replaced by a system of cracks and individual nodules. The globular structure of the protein matrix was revealed by atomic force microscopy. The size of a single globule and protein associates, and the density of their packaging, depending on the concentration, were estimated.
About the Authors
A. V. VolkovaRussian Federation
M. E. Buzoverya
Russian Federation
References
1. Churakova Y.A., Antonova A.A. Mikrokristallografiya kak standartnyj metod ocenki sostoyaniya slyuny [Microcrystallography as a standard method for assessing the state of saliva]. Pacific Medical Journal, 2020. No. 2 (80). Pp. 79–81 (in Russian).
2. Petrov V.O. Avtomatizaciya analiza rastrovyh izobrazhenij tverdoj fazy biologicheskoj zhidkosti mediko-biologicheskih preparatov [Automation of the analysis of raster images of the solid phase of biological fluid of biomedical preparations. Avtoref. dis. kand. tekhn. nauk]. Volgograd, 2009. 150 p.
3. Bystrevskaya A.A., Deev L.A. Morfometriya facij slyoznoj zhidkosti u zdorovyh lyudej razlichnyh vozrastnyh grupp [Morphometry of lacrimal fluid facies in healthy people of various age groups]. Materiali III Vseros. nauchno-prakticheskoi konf. «Funktsionalnaya morfologiya biologicheskikh zhidkostei» [Materials of the III All-Russian Scientific and practical conference. «Functional morphology of biological fluids»]. M., 2004. Pp. 16–17 (in Russian).
4. Petrov V.O., Kamaev V.A., Poroyskiy S.V. Algoritm teksturnoj segmentacii rastrovyh izobrazhenij pri reshenii prikladnyh zadach mediko-biologicheskogo analiza [Algorithm of textural segmentation of raster images in solving applied problems of biomedical analysis]. Modern problems of science and education. 2009. No. 6–3. Pp. 105–110 (in Russian).
5. Tarasevich Y.Y. Processy samoorganizacii v vysyhayushchih kaplyah mnogokomponentnyh zhidkostej: eksperimenty, teorii, prilozheniya. Kratkij obzor publikacij za 2010–2012 gody [Self-organization processes in drying drops of multicomponent liquids: experiments, theories, applications. A brief review of publications for 2010–2012]. Materiali II Mezhdunarodnoi konferentsii «Protsessi samoorganizatsii v visikhayushchikh kaplyakh mnogokomponentnikh zhidkostei: eksperimenti, teorii, prilozheniya» [Proceedings of the II International Conference «Self-organization processes in drying drops of multicomponent liquids: experiments, theories, applications»]. Astrakhan, Izdatel'skij dom «Astrahanskij universitet» Publ., 2012. Pp. 231–239 (in Russian).
6. Shabalin V.N., Shatokhina S.N. Morfologiya biologicheskih zhidkostej cheloveka [Morphology of human biological fluids]. M.: Hrizostom Publ., 2001. 304 p.
7. Shabalin V.V. Biofizicheskie mekhanizmy formirovaniya tverdofaznyh struktur biologicheskih zhid¬kostej cheloveka [Biophysical mechanisms of formation of solid-phase structures of human biological fluids. Abstract. dis. doct. biol. sciences]. Saint Petersburg, FGBNU Pavlov Institute of Physiology of the Russian Academy of Sciences Publ., 2018. 45 p.
8. Chikanova E.S., Fedoseev V.B., Golovanova O.A. Biozhidkosti i fraktaly: kolichestvennyj kriterij samoorganizacii kapli [Bio-liquids and fractals: quantitative criterion of self-organization of droplets]. Bulletin of Omsk University, 2015. No. 4 (78). Pp. 45–49 (in Russian).
9. Vasilenko A.S. Metody analiza facij biologicheskih zhidkostej (obzor literatury) [Methods of analysis of facies of biological fluids (literature review)]. Bulletin of the Student Scientific Society of the Donetsk National University, 2021. P. 28 (in Russian).
10. Buzoverya M.E., Shcherbak Y.P., Shishpor I.V. Kolichestvennaya ocenka mikrostrukturnoj neodnorodnosti facij biozhidkostej [Quantitative assessment of microstructural heterogeneity of biofluid facies]. Journal of Technical Physics, 2014. Vol. 84. No. 10. Pp. 133–138 (in Russian).
11. Rozhkov S.P., Goryunov A.S., Krupnova M.Y. Sopryazhennost' konformacionnyh i fazovyh sostoyanij syvorotochnogo al'bumina v solevyh rastvorah po dannym metoda EPR spinovyh metok [Conjugacy of conformational and phase states of serum albumin in salt solutions according to the EPR method of spin labels]. Trudy Karel'skogo nauchnogo centra Rossijskoj akademii nauk [Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences], 2020. No. 11. Pp. 38–53 (in Russian).
12. Gordeeva V.Y. Teoreticheskoe issledovanie vliyaniya termo-i koncentracionno-kapillyarnyh effektov na dinamiku tonkogo sloya isparyayushchejsya polyarnoj zhidkosti [Theoretical study of the influence of thermo- and concentration-capillary effects on the dynamics of a thin layer of evaporating polar liquid. Diss. candid. phys.-math. sci.]. Perm', 2014. 154 p.
13. Andrievsky R.A. Osnovy nanostrukturnogo materialovedeniya [Fundamentals of nanostructured materials science]. M.: Binom Publ., 2012. 252 p.
14. Katalog YArmarki innovacionnyh medicinskih vysokotekhnologichnyh proektov «Atommed-2008» [Catalogue of the Fair of Innovative medical high-tech projects «Atommed-2008»]. Sarov: FGOU VPO «SarFTI», 2008 (in Russian).
15. Gul V.E. Struktura i prochnost' polimerov [Structure and strength of polymers]. M.: Chemistry Publ., 1978. 328 p.
16. Kudryashova E.V., Gladilin A.K., Levashov A.V. Belki v nadmolekulyarnyh ansamblyah: issledovanie struktury metodom razreshenno–vremennoj fluorescentnoj anizotropii [Proteins in supramolecular ensembles: a study of the structure by the method of time-resolved fluorescent anisotropy].Advances in biological chemistry, 2002. Vol. 42. Pp. 257–294 (in Russian).
17. Rozhkov S.P., Goryunov A.S. Klasterizaciya bel-ko¬vyh molekul v vodno-solevyh rastvorah lizocima [Clustering of protein molecules in aqueous salt solutions of lysozyme]. Scientific notes of Petrozavodsk State University, 2012. No. 4. Pp. 13–18 (in Russian).
18. Tager A.A. Fizikohimiya polimerov [Physic chemistry of polymers]. M.: Chemistry Publ., 1978. 544 p.
19. Buzoverya M.E., Shishpor I.V., Shcherbak Y.P. Vozmozhnosti ispol'zovaniya kombinirovannyh opticheskih i ASM issledovanij al'bumina [Possibilities of using combined optical and AFM studies of albumin]. Journal of Technical Physics, 2018. Vol. 88. No. 2. Pp. 300–305 (in Russian).
20. Buzoverya M.E., Shishpor I.V., Shcherbak Y.P. Eksperimental'noe issledovanie mikrostruktur facij syvorotochnogo al'bumina. [Experimental study of microstructures of serum albumin facies]. Journal of Technical Physics, 2012. Vol. 82. Is. 9. Pp. 87–94 (in Russian).
Review
For citations:
Volkova A.V., Buzoverya M.E. EXPERIMENTAL STUDY OF THE SUPRAMOLECULAR SERUM ALBUMIN STRUCTURE. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(5):255-261. (In Russ.) https://doi.org/10.26583/vestnik.2023.284. EDN: BPBNME