Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

TRANSFORMATIONS, REDUCTIONS AND EXACT SOLUTIONS OF A HIGHLY NONLINEAR EQUATION OF ELECTRON MAGNETOHYDRODYNAMICS

https://doi.org/10.26583/vestnik.2023.293

Abstract

 A strongly nonlinear partial differential equation with three independent variables of the form 𝑢𝑡 = = 𝑢𝑥𝑥𝑢𝑦𝑦−𝑢2𝑥𝑦, which occurs in electron magnetohydrodynamics, isconsidered. Multiparameter transformations that preserve the form of this equation are described, as well as two- and one-dimensional reductions that lead to simpler partial differential equations with two independent variables (including stationary equations of the Monge–Ampere type and nonstationary heat equations) or ordinary differential equations. By methods of generalized separation of variables, exact solutions are constructed, many of which admit representation in elementary functions. More complex solutions are also considered, which are expressed in terms of solutions of linear diffusion-type equations.

About the Author

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation


References

1. Smirnov V.V., Chukbar K.V. «Phonons» in two-dimensional vortex lattices. Journal of Experimental and Theoretical Physics, 2001. Vol. 93. No. 1. P. 126–135.

2. Zaburdaev V.Yu., Smirnov V.V., Chukbar K.V. Nonlinear dynamics of electron vortex lattices. Plasma Physics Reports, 2014. Vol. 30. No. 3. Pp. 214–217.

3. OhkitaniK., Sultu F. Al. Singularity formation in the Smirnov–Chukbar–Zaburdaev equation for the de-formation of vortex lattices. Journal of Physics A: Mathematical and Theoretical, 2013. Vol. 46. No. 20. P. 205501.

4. Goursat E. A Course of Mathematical Analysis. Vol. 3. Part 1, Moscow, Gostekhizdat Publ. 1933 (in Russian).

5. Khabirov S.V. Neizentropicheskie odnomernye dvizheniya gaza, postroennye s pomoshch’yu kon-taktnoj gruppy neodnorodnogo uravneniya Monzha-Ampera [Nonisentropic one-dimensional gas motions obtained with the help of the contact group of the non-homogeneous Monge–Amp`ere equation]. Matematich-eskij sbornik, 1990. Vol. 181. No. 12. Pp. 1607–1622 (in Russian).

6. Ibragimov N.H. (ed.). CRC Handbook of Lie Group Analysis of Differential Equations, vol.1, Sym-metries, Exact Solutions and Conservation Laws. Boca Raton: CRC Press, 1994.

7. Polyanin A.D., Zaitsev V.F. Handbook of Nonlin-ear Partial Differential Equations, 2nd ed. Boca Raton: CRC Press, 2012.

8. Dubinov A.E., Kitayev I.N. New exact solutions of the equation of non-linear dynamics of a lattice of elec-tronic vortices in plasma in the framework of electron magnetohydrodynamics. Magnetohydrodynamics, 2020. Vol. 56. No. 4. Pp. 369–375.

9. Ovsiannikov L.V. Group Analysis of Differential Equations. New York: Academic Press, 1982.

10. Olver P.J. Application of Lie Groups to Differen-tial Equations, 2nd ed. New York: Springer-Verlag, 2000.

11. Polyanin A.D., Zaitsev A.I., Zhurov A.I. Metody resheniya nelineynykh uravneniy matematicheskoy fiziki i mekhaniki [Solution Methods for Nonlinear Equations of Mathematical Physics and Mechanics], Moscow, Fizmatlit Publ., 2005.

12. Galaktionov V.A., Svirshchevskii S.R. Exact So-lutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman & Hall / CRC Press, Boca Raton, 2007.

13. Polyanin A.D., Zhurov A.I. Metody razdeleniya peremennyh i tochnye resheniya nelinejnyh uravnenij matematicheskoj fiziki [Methods of Separation of Vari-ables and Exact Solutions to Nonlinear Equations of Mathematical Physics], Moscow IPMech RAS Publ., 2020.

14. Polyanin A.D., Zhurov A.I. Separation of Varia-bles and Exact Solutions to Nonlinear PDEs. Boca Ra-ton–London: CRC Press, 2022.

15. Sidorov A.F., Shapeev V.P., Yanenko N.N. Metod differencial’nyh svyazej I ego prilozheniya v gazovoj dinamike [Method of Differential Constraints and its Applications in Gas Dynamics], Novosibirsk: Nauka Publ., 1984.

16. Kudryashov N.A. Simplest equation method to look for exact solutions of nonlinear differential equa-tions. Chaos, Solitons and Fractals. 2005. Vol. 24. No. 5. Pp. 1217–1231.

17. Kudryashov N.A. Metody nelinejnoj ma-tematicheskoj fiziki [Methods of Nonlinear Mathemati-cal Physics], Dolgoprudnyi: Izd. Dom Intellekt Publ., 2010.

18. Polyanin A.D., Aksenov A.V. Ispol’zovanie prostyh reshenij nelinejnyh uravnenij matematicheskoj fiziki dlya postroeniya bolee slozhnyh reshenij [Using simple solutions of nonlinear equations of mathematical physics to construct more complex solutions]. Vestnik NIYaU MIFI, 2020. Vol. 9. No. 5. Pp. 420–437 (in Rus-sian).

19. Aksenov A.V., Polyanin A.D. Methods for con-structing complex solutions of nonlinear PDEs using simpler solutions. Mathematics, 2021. Vol. 9. No. 4, 345.

20. Aksenov A.V., Polyanin A.D. Obzor metodov postroeniya tochnyh reshenij uravnenij matematich-eskoj fiziki, osnovannyh na ispol’zovanii bolee prostyh reshenij [Review of methods for constructing exact solu-tions of equations of mathematical physics based on simpler solutions]. Theoretical and Mathematical Phys-ics, 2022. Vol. 211. No. 2. Pp. 149–180 (in Russian) DOI: https://doi.org/10.4213/tmf10247

21. Polyanin A.D., Sorokin V.G., Zhurov A.I. Delay Ordinary and Partial Differential Equations. Boca Ra-ton: CRC Press, 2024.

22. Tikhonov A.N., Samarskii A.A. Uravneniya ma-tematicheskoj fiziki [Equations of Mathematical Phys-ics], Moscow: Nauka Publ., 1972.

23. Polyanin A.D., Nazaikinskii V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed. Boca Raton–London: CRC Press, 2016.


Review

For citations:


Polyanin A.D. TRANSFORMATIONS, REDUCTIONS AND EXACT SOLUTIONS OF A HIGHLY NONLINEAR EQUATION OF ELECTRON MAGNETOHYDRODYNAMICS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(4):201-210. (In Russ.) https://doi.org/10.26583/vestnik.2023.293

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)