Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

EXACT SOLUTIONS AND REDUCTIONS OF UNSTEADY EQUATIONS OF MATHEMATICAL PHYSICS OF THE MONGE – AMPERE TYPE

https://doi.org/10.26583/vestnik.2023.299

EDN: MDGFDG

Abstract

Nonlinear unsteady equations of mathematical physics with three independent variables containing the first derivative in time and a quadratic combination of the second derivatives in spatial variables of the Monge – Ampere type are investigated. Separate equations of this type are found, for example, in electron magnetohydrodynamics and differential geometry. In this paper, an eleven-parameter transformation preserving the form of the class of nonlinear equations under study is described. Two-dimensional and one-dimensional reductions leading to simpler partial differential equations with two independent variables or ordinary differential equations are considered. Self-similar and other invariant solutions are obtained. By methods of generalized separation of variables, a number of exact solutions are constructed, many of which are expressed in terms of elementary functions.

About the Author

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation


References

1. Smirnov V.V., Chukbar K.V. «Phonons» in two-dimensional vortex lattices. Journal of Experimental and Theoretical Physics, 2001. Vol. 93. No. 1. Pp. 126–135.

2. Zaburdaev V.Yu., Smirnov V.V., Chukbar K.V. Nonlinear dynamics of electron vortex lattices. Plasma Physics Reports, 2014. Vol. 30. No. 3. Pp. 214–217.

3. Ohkitani K., Sultu F. Al. Singularity formation in the Smirnov–Chukbar– Zaburdaev equation for the deformation of vortex lattices, Journal of Physics A: Mathematical and Theoretical, 2013. Vol. 46. No. 20.

4. Dubinov A.E., Kitayev I.N. New exact solutions of the equation of non-linear dynamics of a lattice of electronic vortices in plasma in the framework of electron magnetohydrodynamics. Magnetohydrodynamics, 2020. Vol. 56. No. 4. Pp. 369–375.

5. Polyanin A.D., Preobrazovaniya. Redukcii i tochnye resheniya odnogo sil’no nelinejnogo uravneniya elektronnoj magnitnoj gidrodinamiki [Transformations, reductions and exact solutions of a highly nonlinear equation of electron magnetohydrodynamics], Vestnik Nacional’nogo Issledovatel’skogo Yadernogo Universiteta «MIFI», 2023. Vol. 12. No. 4. Pp. 201–210 (in Russian).

6. Goursat E. Kurs matematicheskogo analiza. [A course of mathematical analysis]. Vol. 3, Part 1, Moscow, Gostekhizdat Publ., 1933 [in Russian].

7. Martin M.N. The propagation of a plane shock into a quiet atmosphere. Canadian Journal of Mathematics, 1953. Vol. 3. Pp. 165–187.

8. Rozhdestvenskii B.L., Yanenko N.N. Systems of Quasilinear Equations and Their Applications to Gas Dynamics. Providence, American Mathematical Society, 1983. 676 p.

9. Khabirov S.V. Neizentropicheskie odnomernye dvizheniya gaza, postroennye s pomoshch’yu kontaktnoj gruppy neodnorodnogo uravneniya Monzha–Ampera [Nonisentropic one-dimensional gas motions obtained with the help of the contact group of the nonhomogeneous Monge – Amp`ere equation]. Matematicheskij sbornik, 1990, Vol. 181. No. 12. Pp. 1607–1622 (in Russian).

10. Ibragimov N.H. (ed.). CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press. Boca Raton. 1994.

11. Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differential Equations. 2nd ed. CRC Press, Boca Raton, 2012.

12. Krylov N.V. Posledovatel`nosti vy`pukly`kh funkczij i oczenki maksimuma resheniya parabolicheskogo uravneniya [Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation]. Sibirskij matematicheskij zhurnal, 1976. Vol. 17. No. 2. Pp. 226–236 (in Russian).

13. Spiliotis J. Certain results on a parabolic type Monge – Ampere equation. Journal of Mathematical Analysis and Applications, 1992. Vol. 163. No. 2. Pp. 484–511.

14. Chen L., Wang G., Lian S. Convex-monotone functions and generalized solution of parabolic Monge –Ampere equation. Journal of Differential Equations, 2002. Vol. 186. No. 2. Pp. 558–571.

15. Tang L. Regularity results on the parabolic Monge –Ampere equation with VMO type data. Journal of Differential Equations, 2013. Vol. 255. No. 7. Pp. 1646–1656.

16. Dai L. Exterior problems of parabolic Monge –Ampere equations for n = 2, Computational & Applied Mathematics, 2014. Vol. 67. No. 8. Pp. 1497–1506.

17. Dai L., Cheng H. The first initial-boundary value problem of parabolic Monge – Ampere equations outside a bowl-shaped domain.Boundary Value Problems, 2021. No. 29; https://doi.org/10.1186/s13661-021-01505-w

18. Ivochkina N.M., Ladyzhenskaya O.A. O parabolicheskih uravneniyah, porozhdaemyh simmetricheskimi funkciyami sobstvennyh znachenij Gessiana ili glavnymi kriviznami iskomoj poverhnosti. Chast’ I: Parabolicheskie uravneniya Monzha – Ampera [On parabolic equations generated by symmetric functions of Hessian eigenvalues or the principal curvatures of the desired surface. Part I: Monge – Ampere parabolic equations], Algebra i analiz, 1994. Vol. 6. No. 3. Pp. 141–160 (in Russian).

19. Wang J., Yang J., Liu X. The initial and Neumann boundary value problem for a class parabolic Monge – Ampere equation. Abstract and Applied Analysis. Vol. 2013. No. 535629; http://dx.doi.org/10.1155/ 2013/535629.

20. Tang L. Boundary regularity on the parabolic Monge – Ampere equation. Journal of Differential Equations, 2015. Vol. 259. Pp. 6399–6431.

21. Loftin J., Tsui M.P. Ancient solutions of the affine normal flow. Journal of Differential Geometry, 2008. Vol. 78. Pp. 113–162.

22. Ovsiannikov L.V. Group Analysis of Differential Equations, Academic Press, New York, 1982.

23. Olver P.J. Application of Lie Groups to Differential Equations, 2nd ed., Springer-Verlag, New York, 2000.

24. Galaktionov V.A., Svirshchevskii S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC Press, Boca Raton, 2007.

25. Polyanin A.D., Zhurov A.I. Metody razdeleniya peremennyh i tochnye resheniya nelinejnyh uravnenij matematicheskoj fiziki [Methods of Separation of Variables and Exact Solutions to Nonlinear Equations of Mathematical Physics]. Moscow. IPMech RAS Publ., 2020 [in Russian].

26. Polyanin A.D., Zhurov A.I. Separation of Variables and Exact Solutions to Nonlinear PDEs. Boca Raton–London, CRC Press, 2022.

27. Sidorov A.F., Shapeev V.P., Yanenko N.N. Metod differencial’nyh svyazej i ego prilozheniya v gazovoj dinamike [Method of Differential Constraints and its Applications in Gas Dynamics]. Novosibirsk, Nauka Publ., 1984 [in Russian].

28. Kudryashov N.A. Metody nelinejnoj matematicheskoj fiziki [Methods of Nonlinear Mathematical Physics]. Dolgoprudnyi, Izd. Dom Intellekt Publ., 2010 [in Russian].

29. Aksenov A.V., Polyanin A.D. Methods for constructing complex solutions of nonlinear PDEs using simpler solutions, Mathematics, 2021. Vol. 9. No. 4. P. 345.

30. Aksenov A.V., Polyanin A.D. Obzor metodov postroeniya tochnyh reshenij uravnenij matematicheskoj fiziki, osnovannyh na ispol’zovanii bolee prostyh reshenij [Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions]. Theoretical and Mathematical Physics, 2022. Vol. 211. No. 2. Pp. 567–594 [in Russian].


Review

For citations:


Polyanin A.D. EXACT SOLUTIONS AND REDUCTIONS OF UNSTEADY EQUATIONS OF MATHEMATICAL PHYSICS OF THE MONGE – AMPERE TYPE. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(5):276-288. (In Russ.) https://doi.org/10.26583/vestnik.2023.299. EDN: MDGFDG

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)