Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

PECULIARITIES OF DISTRIBUTION AEROSOL PARTICLES IN ANTHROPOGENIC CONDITIONS

https://doi.org/10.26583/vestnik.2024.303

EDN: NMDMSC

Abstract

 The paper discusses the dynamics of aerosols as applied to the spread of airborne viral infections in conditions where the mutual movement of the objects under study should be taken into account. This feature should be most strongly manifested in urban environments, where various traffic flows are an integral part of the habitat of modern man. The movement of individual particles in two-dimensional geometry under the influence of gravity and friction, as well as an external electrostatic field, is considered. Within the framework of the developed model, the influence of initial conditions determined by the physiological processes of respiration and the state of the environment on the dynamics of the spread of exhaled aerosols is studied. An assessment was made of the distances over which aerosol particles can spread depending on the size and initial velocities of the particles. Larger particles have been shown to travel longer distances. While smaller particles are «frozen» into the environment and can only spread with air currents. When applied to the transmission of viral infections, this means completely different types of virus transportation depending on the size and type of dispersed phase. The results obtained were applied to the analysis of the characteristics of spread for viruses in metro.

About the Authors

A. R. Karimov
National Research Nuclear University MEPhI
Russian Federation

Doctor of Science in Physics and Math, professor, Department of laser and plasma technologies of the office of educational programs



M. A. Solomatin
National Research Nuclear University MEPhI
Russian Federation

graduate student, Department of  Electrophysical Facilities



References

1. Scharfman B.E., Techet A.H., Bush J.W.M., Bourouiba L. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Experiments in Fluids, 2016. Vol. 57. P. 24.

2. Alsved M., Bourouiba L., Duchaine C., et al. Natural sources and experimental generation of bioaerosols: Challenges and perspectives. Aerosol Science and Technology, 2019. Vol. 54. Pp. 547–571.

3. Grinshpun S.A., Clark J.M. Measurement and characterization of bioaerosols. Journal of Aerosol Science, 2005. Vol. 36. P. 553.

4. Kondratyev K.Y., Ivlev L.S., Krapivin V.F., Varotsos C.A. Atmospheric Aerosol Properties: Formation, Processes and Impacts. Berlin: Springer-Verlag, 2006. 572 p.

5. Piskunov V.N. Dinamika aerozolej [Aerosol dynamics]. Moscow, Fizmatlit Publ., 2010. 293 p. [in Russian].

6. Ivlev L.S. Atmospheric aerosols. Aerosols – Science and Technology / Agranovski I. ed. Wienheim, Wiley – VCH, 2010. 345 p.

7. Filds B.N., Najp D.M., Merfi F.A., Harrison S. Virusologiya [Virology]. Moscow, Mir Publ., 1989. Vol. 3. 492 p. [in Russian].

8. Huang S. COVID-19. Why we should all wear masks-There is new scientific rationale. Available at: https://medium.com/@Cancerwarrior/covid-19-why-we-should-all-wear-masks-there-is-new-scientific-rationale-280e08ceee71 (accessed 10.11.2023).

9. Brusina E.B., CHezganova E.A., Drozdova O.M. Aerogennyj mekhanizm peredachi bol'nichnyh patogenov [Aerogenic mechanism of transmission of hospital pathogens]. Fundamental'naya i klinicheskaya medicina, 2020. Vol. 5. P. 97 (in Russian).

10. Bourouiba L. The fluid dynamics of disease transmission. Annual Review of Fluid Mechanics, 2021. Vol. 53. P. 473.

11. Fuks N.A. Mekhanika aerozolej [Aerosol mechanics]. Moscow, Izd-vo Akademii nauk SSSR Publ., 1955. 351 p. [in Russian].

12. Karimov A.R., Stenflo L., Yu M.Y. Dynamics of charged aerosols relevant to transmission of airborne infections. Physica Scripta, 2022. Vol. 97. P. 085007.

13. Arkhipov V.A., Usanina A.S. Dvizhenie aerozol'nyh chastic v potoke. [Motion of aerosol particles in the flow]. Tomsk, Izdatel'skij Dom TGU Publ., 2013. 252 p. [in Russian].

14. Wang Z., Bauch C.T., Bhattacharyya, S., d'Onofrio A., et al. Statistical physics of vaccination Physics Reports 2016. Vol. 664. Pp. 1–113.

15. Malchow H., Petrovskii S.V., Venturino E. Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation. Chapman @Hall / CRC Press, Boca Ration, 2007. 464 p.

16. Bratus' A.S., Novozhilov A.S., Platonov A.P. Dinamicheskie sistemy i modeli biologii [Dynamic systems and models of biology]. Moscow, Fizmatlit Publ., 2010. 400 p. [in Russian].

17. Kabanikhin S.I., Krivorotko O.I. Mathematical modeling of the Wuhan COVID-2019 epidemic and inverse problems. Computational Mathematics and Mathematical Physics, 2020. Vol. 60. Pp. 1889–1899.

18. Ghosh K., Ghosh A.K. Study of COVID-19 epidemiological evolution in India with a multi-wave SIR model. Nonlinear Dynamics, 2022. Vol. 109. Pp. 47–55.

19. Leonov A., Nagornov O., Tyuflin S. Modeling of Mechanisms of Wave Formation for COVID-19 Epidemic. Mathematics, 2022. Vol. 11. No. 1. P. 167.

20. Israel H. Atmospheric electricity. Jerusalem: Keter Press, 1973.

21. Smirnov B. M. Elektricheskij cikl v zemnoj atmosfere [The electric cycle in the Earth's atmosphere]. Uspekhi physicheskikh nauki, 2014. Vol. 184(11). Pp. 1153–1176 (in Russian).

22. Williams E. The global electrical circuit: A review. Atmospheric Research, 2009. Vol. 91. Pp. 140–152.

23. Vargaftik N.B. Spravochnik po teplofizicheskim svojstvam gazov i zhidkostej [Reference book on thermophysical properties of gases and liquids]. Moscow, Nauka Publ., 1972. 721 p. [in Russian].

24. Mahmoud S., Hosni M., Jones B., Shugart J.M., Hosni M.H., Mead K.R., et al. Transport and containment of infectious disease expelled by coughing in an aircraft cabin. ASHRAE Transactions, 2020. Vol. 126. P. 375.

25. Grippi M.A., Elias Jack A., Fishman Jay A., et. al. Fishman's Pulmonary Diseases and Disorders. New York: McGraw-Hill Education, 2015.

26. Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perret H.R., Painter C.D., et. al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 2020. Vol. 183(4). Pp. 1043–1057.

27. Kaplunenko V.G., Kosinov N.V., Skal'nyj A.V. Uyazvimye elektricheski zaryazhennye mesta SARS-CoV-2; elektricheskaya model' virusa i rol' mikroelementov v ego inaktivacii [Vulnerable electrically charged areas of SARS-CoV-2; electrical model of the virus and the role of trace elements in its inactivation]. Mikroelementy v medicine, 2021. Vol. 22. No. 1. Pp. 3–20 (in Russian).

28. Klimanov I.A., Soodaeva S.K. Mekhanizmy formirovaniya kondensata vydyhaemogo vozduha i markery oksidativnogo stressa pri patologiyah respiratornogo trakta [Mechanisms of formation of exhaled air condensate and markers of oxidative stress in pathologies of the respiratory tract]. Pul'monologiya, 2009. No. 2. Pp. 113–119 (in Russian).

29. Stadnytskyi V., Bax C.E., Bax A., Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proceedings of the National Academy of Sciences, 2020. Vol. 117(22). Pp. 11875–11877.


Review

For citations:


Karimov A.R., Solomatin M.A. PECULIARITIES OF DISTRIBUTION AEROSOL PARTICLES IN ANTHROPOGENIC CONDITIONS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(1):30-39. (In Russ.) https://doi.org/10.26583/vestnik.2024.303. EDN: NMDMSC

Views: 143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)