COMPUTING SCHEMES FOR DETECTING ANOMALIC EMISSIONS IN THE VALUES OF CURRENT PATIENT INDICATIONS DURING ARTIFICIAL VENTILATION
https://doi.org/10.26583/vestnik.2024.319
EDN: ORGLAD
Abstract
Artificial pulmonary ventilation (ALV) is considered one of the most important methods of intensive care, part of a set of measures to maintain the vital functions of the body in critical conditions. In connection with the creation of intelligent ventilation modes that increase the efficiency of control of ventilators, it is necessary to develop and apply various computational schemes for processing data on the values of the patient’s current indicators during mechanical ventilation. The paper discusses the problem of identifying abnormal emissions and leveling their negative impact on the identified significant characteristics of the calculated indicators necessary for adopting optimal values of ventilation flow parameters that ensure the most effective treatment of the patient. To solve this problem, the article discusses and applies several so-called robust methods and computational schemes based on them for identifying anomalous outliers in the values of indicators of the patient’s condition and determining their future values.
Keywords
About the Authors
S. G. KlimanovRussian Federation
A. V. Kryanev
Russian Federation
V. A. Trikozova
Russian Federation
D. D. Tsareva
Russian Federation
References
1. Ananyev E.P., Polupan A.A., Matskovsky I.V., et al. Using the IntelliVent-ASV mode to maintain the target EtCO2 range in patients with severe TBI. Journal of Neurosurgery named after N.N. Burdenko, 2017. Vol. 81(5). Pp. 63–68 (in Russian).
2. Artificial intelligence and machine learning show promise in cancer diagnosis and treatment // Medical Xpress. Available at: https:// medicalxpress.com/news/2022-03-artificial-intelligence-machine-cancer-diagnosis.html (accessed 20.12.2023).
3. Ivakhno N.V., Minakov E.I., Fedorov S.S., Antsibor S.V. Matematicheskoe modelirovanie processov v biotekhnicheskom komplekse «Apparatura korrektiruyushchego vozdejstviya – dyhatel'naya sistema cheloveka» [Mathematical modeling of processes in the biotechnical complex «Corrective influence equipment – human respiratory system»]. Vestnik novyh medicinskih tekhnologij (elektronnoe izdanie), 2015. No. 4 (in Russian).
4. Kryanev A.V., Lukin G.V., Udumyan D.K. Metric analysis and data processing. Moscow, Fizmatlit Publ., 2012. 308 p.
5. Kryanev A.V., Udumyan D.K. Metric analysis, properties and applications as a tool for interpolation. International Journal of Mathematical Analysis, 2014. Vol. 8. No. 45. Pp. 2221–2228.
6. Kryanev A.V., Udumyan D. K. Metric Analysis, Properties and Applications as a Tool for Forecasting. International Journal of Mathematical Analysis, 2014. Vol. 8. No. 60. Pр. 2971–2978.
7. Ivanov V.V., Kryanev A.V., Udumyan D.K., Lukin G.V. Metric Analysis Approach for Interpolation and Forecasting of Time Processes. Applied Mathematical Sciences, 2014. Vol. 8. No. 22. Pр. 1053–1060.
8. Seber J. Linejnyj regressionnyj analiz [Linear regression analysis]. Moscow, Mir Publ., 1980. 456 p.
Review
For citations:
Klimanov S.G., Kryanev A.V., Trikozova V.A., Tsareva D.D. COMPUTING SCHEMES FOR DETECTING ANOMALIC EMISSIONS IN THE VALUES OF CURRENT PATIENT INDICATIONS DURING ARTIFICIAL VENTILATION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(2):76-82. (In Russ.) https://doi.org/10.26583/vestnik.2024.319. EDN: ORGLAD