AN APPLICATION OF FUZZY LOGIC CONTROLLERS FOR POWER CONTROL OF THE VVER-1200 NUCLEAR REACTOR
https://doi.org/10.26583/vestnik.2024.320
EDN: QBFVFE
Abstract
This article deals with fuzzy and fuzzy-PI controllers for the automatic power control system of a non-linear mathematical model of the VVER-1200 nuclear reactor. The power control systems loop includes a mathematical model of the electromagnetic stepper motor, a model of in-core and ex-core neutron flux sensors, and a refined mathematical model of the group 12 of control and protection system control rods, obtained by approximating experimental data using the Levenberg–Marquardt algorithm for nonlinear least-square problem. Based on the state-space model, 10 transfer function matrices of the nuclear reactor corresponding to the power range of 10 to 100 % of the nominal power were also determined, and 10 classical PI controllers were modelled to ensure stability margins of at least 60 degrees in phase and at least 10 decibels in amplitude for each power level of the plant. Simulation results show significant advantages of the developed fuzzy controllers both in the steady-state power maintenance mode considering noise in the neutron flux sensor channel, and in load-following mode at different power levels.
About the Authors
S. PravosudRussian Federation
D. Maslakov
Russian Federation
Ya. Yakubov
Russian Federation
References
1. Belleni-Morante A. The kinetic behaviour of a reactor composed of G loosely coupled cores: Integral formulation. Journal of Nuclear Energy. Parts A/B. Reactor Science and Technology, 1964. Vol. 18. Iss. 10. Pp. 547–559. https://doi.org/10.1016/0368-3230(64) 90139-9.
2. Pikina G.A. Le Van Din, Pashchenko F.F. Modeli dinamiki reaktora VVER s moshchnostnym koeffitsiyentom reaktivnosti [Mathematical models of VVER reactor with power reactivity coefficients]. Vestnik MEI, 2016. No. 2. Pp. 75– 83 (in Russian).
3. Nikulina E.N. Matematicheskoye modelirovaniye sistem avtomaticheskogo regulirovaniya teplovoy moshchnosti reaktora [Mathematical modelling of control systems of the heat power of a nuclear reactor]. Vestnik Nats. tekhn. un-ta «KhPI»: Sb. nauch. tr. Temat. vyp.: Sistemnyy analiz. upravleniye i informatsionnyye tekhnologii. Kharkov: NTU «KhPI», 2009. No. 4. Pp. 131–136 (in Russian).
4. Anith Khairunnisa Ghazali et al. PID Controller for nuclear reactor power control system, International Journal of Pure and Applied Mathematics, 2018. Vol. 118. No. 24.
5. Jiang Y., Geslot B., Lamirand V., Leconte P. Review of kinetic modulation experiments in low power nuclear reactors EPJ N. Nuclear Sciences & Technologies, 2020. Vol. 6. P. 55. https://doi.org/10.1051/ epjn/2020017.
6. Zarei M. A physically based PID controller for the power maneuvering of nuclear reactors. Progress in Nuclear Energy, 2020. Vol. 127. 103431.
7. https://doi.org/10.1016/j.pnucene.2020.103431.
8. Abdulrahim K.K., Tolokonskiy A.O., Laidani Z., Berreksi R. Optimal'noe upravlenie na osnove linejno-kvadratichnogo regulyatora dlya upravleniya yadernym reaktorom [Optimal Control Based on a Linear-Quadratic Regulator for Controlling a Nuclear Reactor]. Vestnik NIYaU MIFI, 2021. Vol. 10. No. 5. Pp. 436–447 (in Russian). https://doi.org/10.1134/S2304487X 21050023.
9. Arab-Alibeik H., Setayeshi S. Improved Temperature Control of a PWR Nuclear Reactor Using an LQG/LTR Based Controller. IEEE Transactions on Nuclear Science, 2003. Vol. 50. Pp. 211–218. https://doi.org/10.1109/TNS.2002.807860.
10. Yan X., et al. Robust power control design for a small, pressurized water reactor using an H infinity mixed sensitivity method. Nuclear Engineering and Technology, 2020. Vol. 52. Iss. 7. Pp. 1443–1451. https://doi.org/10.1016/j.net.2019.12.031.
11. Vajpayee V., Mukhopadhyay S., Tiwari A.P. Data-Driven Subspace Predictive Control of a Nuclear Reactor. IEEE Transactions on Nuclear Science, 2018. Vol. 65. No. 2. Pp. 666–679. DOI: 10.1109/TNS.2017. 2785362.
12. Calvillo C.F. et al. Comparison of Model Based Predictive Control and Fuzzy Logic Control of a DFIG with an Indirect Matrix Converter . IECON 2012 – 38th Annual Conference on IEEE Industrial Electronics Society. Montreal, QC, Canada, 2012. Pp. 6063-6068. DOI: 10.1109/IECON.2012.6389090.
13. Zeng W. et al. A functional variable universe fuzzy PID controller for load following operation of PWR with the multiple model . Annals of Nuclear Energy, 2020. Vol. 140. https://doi.org/10.1016/j.anucene. 2019.107174.
14. Liu Х, Wang M. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant. Mathematical Problems in Engineering, 2014. Vol. 2014. Article ID 908526. 10 p. https://doi.org/10.1155/2014/ 908526.
15. Zeng W., et al. Core power control of a space nuclear reactor based on a nonlinear model and fuzzy-PID controller. Progress in Nuclear Energy, 2021. Vol. 132. https://doi.org/10.1016/j.pnucene.2020. 103564.
16. Zeng W., et al. A fuzzy-PID composite controller for core power control of liquid molten salt reactor. Annals of Nuclear Energy, 2020. Vol. 139. https://doi.org/10.1016/j.anucene.2019.107234.
17. Acharya D., Rai A., Kumar Das D. Optimal rule based fuzzy-PI controller for core power control of nuclear reactor. Annals of Nuclear Energy, 2023. Vol. 194. https://doi.org/10.1016/j.anucene.2023.110118.
18. Zhang L., Xie H., Duan Q., Lu C., Li J., et al. Power Level Control of Nuclear Power Plant Based on Asymptotical State Observer under Neutron Sensor Fault // Science and Technology of Nuclear Installations, 2021. Vol. 2021, Article ID 8833729, 8 p. https://doi.org/ 10.1155/2021/8833729.
19. Shchukin K.Yu. Matematicheskoye modelirovaniye protsessov. protekayushchikh pri peremeshchenii shagovogo privoda [Mathematical modelling of the processes occurring when electromagnetic stepper motor is moved]. Voprosy elektromekhaniki. Trudy NPP VNIIEM-2007. No. 104. Pp. 70–77 (in Russian).
20. Pravosud S.S., Maslakov D.S., Yakubov Y.O., Ovcherenko A.A. Verifikaciya modeli dinamiki yadernogo reaktora VVER-1200, sostoyashchej iz odnogo toplivnogo uzla, primykayushchego k dvum uzlam teplonositelya [Verification of the WWER-1200 reactor dynamic model consisting of one-fuel unit adjacent to two coolant units]. Global Nuclear Safety, 2023. Vol. 48(3). Pp. 82–95 (in Russian). https://doi.org/ 10.26583/gns-2023-03-08.
21. Berreksi R., Tolokonskiy A.O., Laidani Z., Abdulrahim K.K., Kudratov V.N. Primenenie nechetkoj logiki v sistemah real'nogo vremeni na baze programmno-tekhnicheskogo kompleksa UMIKON [Application of Fuzzy Logic in Real-Time Systems Based on the Umicon Software and Hardware Complex]. Vestnik NIYaU MIFI, 2022. Vol. 11. No.1. Pp. 68–79 (in Russian). https://doi.org/10.56304/S2304487X22010059.
22. Djaroum B., Solovyev D.A., Semenov A.A., Schukin N.V., Vygovsky S.B., Al-Shamayleh A.I., Tanash H.A. Vliyanie temperaturnogo regulirovaniya pri rabote VVER-1000 i VVER-1200 v rezhime sledovaniya za nagruzkoj [Temperature Regulation Contribution during the Power Control of the VVER-1000 and VVER-1200 Reactors in a Load-Following Mode]. Vestnik NIYaU MIFI, 2020. Vol. 9. No. 3. Pp. 201–209 (in Russian). https://doi.org/10.56304/S2304487X20030037.
Review
For citations:
Pravosud S., Maslakov D., Yakubov Ya. AN APPLICATION OF FUZZY LOGIC CONTROLLERS FOR POWER CONTROL OF THE VVER-1200 NUCLEAR REACTOR. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(2):97-109. (In Russ.) https://doi.org/10.26583/vestnik.2024.320. EDN: QBFVFE