EXPERIMENTAL RESEARCH OF WATER OUTFLOW FROM A VERTICAL TUBE THROUGH A TESLA VALVE
https://doi.org/10.26583/vestnik.2024.5.2
EDN: JZCTNT
Abstract
The modes of the water outflow from a vertical cylindrical vessel through a Tesla valve connected in direct or reverse directions were experimentally studied. The kinematics of the water level decrease in the vessel was recorded. It was found that the time of the vessel emptying through a Tesla valve considerably exceeds the time of the vessel emptying through an ordinary tube of a smaller cross-section (both for direct and reverse switching on of the valve). Emptying of the valve at the direct switching on is twice faster than at the reverse one. The velocity of the water column level decreases with time linearly. The obtained data prove that the valve has diodicity, and that the liquid outflow from the vessel through the Tesla valve follow to some analog of the Torricelli's law kinematically with different effective slowing factors.
About the Authors
Dj. N. IskhakovaRussian Federation
H. N. Kolesov
Russian Federation
A. E. Dubinov
Russian Federation
References
1. Cheney M., Uth R. Tesla, master of lightning. New York, Barnes & Noble Publishing, 1999. 184 p. https://teslauniverse.com/nikola-tesla/books/tesla-master-lightning
2. Tesla N. Valvular conduit, Patent US 1329559, 1920. https://patentimages.storage.googleapis.com/26/ 65/c7/c647a84af1f78f/US1329559.pdf
3. Thompson S.M., Ma H.B., Wilson C. Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. Experim. Thermal Fluid Sci., 2011. Vol. 35. No. 7. Pp. 1265. DOI: 10.1016/j.expthermflusci.2011.04.014
4. Nobakht A.Y., Shahsavan M., Paykani A. Numerical study of diodicity mechanism in different Tesla-type microvalves. J. Appl. Res. Techn., 2013. Vol. 11, No. 6. Pр. 876. DOI: 10.1016/S1665-6423(13)71594-3
5. Mohammadzadeh K., Kolahdouz E.M., Shirani E., Shafii M.B. Numerical study on the performance of Tesla type microvalve in a valveless micropump in the range of low frequencies. J. Micro-Bio Robot., 2013. Vol. 8. No. 1. Pp. 145. DOI: 10.1007/s12213-013- 0069-1
6. Wang C.-T., Chen Y.-M., Hong P.-A., Wang Y.-T. Tesla valves in micromixers. Int. J. Chem. Reactor Eng., 2014. Vol. 12. No. 1. Pp. 397. DOI: 10.1515/ijcre-2013-0106
7. de Vries S.F., Florea D., Homburg F.G.A., Frijns A.J.H. Design and operation of a Tesla-type valve for pulsating heat pipes. Int. J. Heat Mass Transfer, 2017. Vol. 105, No. 1. Pp. 1‒11. DOI: 10.1016/j.ijheatmasstransfer.2016.09.062
8. Qian J.-Y., Chen M.-R., Gao Z.-X., Jin Z.-J. Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression. Energy, 2019. Vol. 179. No. 1. Pp. 647. DOI: 10.1016/j.energy.2019.05.064
9. Abdelwahed M., Chorfi N., Malek R. Reconstruction of Tesla micro-valve using topological sensitivity analysis. Adv. Nonlinear Anal., 2020. Vol. 9. No. 1. Pp. 567. DOI: 10.1515/anona-2020-0014
10. Nguyen Q.M., Abouezzi J., Ristroph L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nature Comm., 2021. Vol. 12. No. 1. Pp. 2884. DOI: 10.1038/s41467-021-23009-y
11. Bohm S., Phi H.B., Moriyama A., Runge E., Strehle S., König J., Cierpka C., Dittrich L. Highly efficient passive Tesla valves for microfluidic applications. Microsyst. & Nanoeng., 2022. Vol. 8. No. 1. Pp. 97. DOI: 10.1038/s41378-022-00437-4
12. Hu P., Wang P., Liu L., Ruan X., Zhang L., Xu Z. Numerical investigation of Tesla valves with a variable angle. Phys. Fluids, 2022. Vol. 34. No. 3. Pp. 033603. DOI: 10.1063/5.0084194
13. Buglie W.L.N., Tamrin K.F., Sheikh N.A., Yasin M.F.M., Mohamaddan S. Enhanced fluid mixing using a reversed multistage Tesla micromixer. Chem. Eng. Technol., 2022. Vol. 45. No. 7. Pp. 1255. DOI: 10.1002/ceat.202200055
14. Li X., Worrall K., Vedanthu A., Scott-George A., Harkness P. The pulse-elevator: A pump for granular materials. Acta Astronautica, 2022. Vol. 200. No. 1. Pp. 33. DOI: 10.1016/j.actaastro.2022.07.052
15. Wang J., Cui B., Liu H., Chen X., Li Y., Wang R., Lang T., Yang H., L. Li, Pan H., Quan J., Chen Y., Xu J., Liu Y. Tesla valve-based flexible microhybrid chip with unidirectional flow properties. ASC Omega, 2022. Vol. 7. No. 36. Pp. 31744. DOI: 10.1021/acsomega. 2c02075
16. Andriukaitis D., Vargalis R., Šerpytis L., Drevinskas T., Kornyšova O., Stankevičiu M., Bimbiraitė-Survilienė K., Kaškonienė V., Maruškas A.S., Jonušauskas L. Fabrication of microfluidic Tesla valve employing femtosecond bursts. Micromachines, 2022. Vol. 13. No. 8. Pp. 1180. DOI: 10.3390/mi13081180
17. Wang P., Hu P., Liu L., Xu Z., Wang W., Scheid B. On the diodicity enhancement of multistage Tesla valves. Phys. Fluids, 2023. Vol. 35. No. 5. Pp. 052010. DOI: 10.1063/5.0145172
18. Purwidyantri A., Prabowo B.A. Tesla valve microfluidics: the rise of forgotten technology. Chemosensors, 2023. Vol. 11. No. 4. Pp. 256. DOI: 10.3390/chemosensors11040256
19. Wang Y., He Y., Xie X., Huang Z., Xu H., Hu Q., Ma C. Design and simulation of a new near zero-wear non-contact self-impact seal based on the Tesla valve structure. Lubricants, 2023. Vol. 11. No. 3. Pp. 102. DOI: 10.3390/lubricants11030102
20. Zeng G., Xu M., Mou J., Hua C., Fan C. Application of Tesla valve’s obstruction characteristics to reverse fluid in fish migration. Water, 2023. Vol. 15. No. 1. P. 40. DOI: 10.3390/w15010040
21. Stith D. The Tesla valve – a fluidic diode. Phys. Teacher, 2019. Vol. 57. No. 3. P. 201. DOI: 10.1119/1.5092491
22. Nguyen Q.M., Huang D., Zauderer E., Roma¬ne-lli G., Meyer C.L., Ristroph L. Tesla’s fluidic diode and the electronic-hydraulic analogy. Amer. J. Phys., 2021. Vol. 89. No. 3. Pp. 393. DOI: 10.1119/10.0003395
23. Kolesov H.N., Dubinov A.E. Custom-made tubular Tesla valves for laboratory lessons in classroom. Phys. Fluids, 2024. Vol. 36. No. 5. Pp. 051801. DOI: 10.1063/5.0203900
24. Leigh S.C., Summers A.P., Hoffmann S.L., German D.P. Shark spiral intestines may operate as Tesla valves. Proc. Royal Soc. B, 2021. Vol. 288, No. 1955. Pp. 20211359. DOI: 10.1098/rspb.2021.1359
25. Driver R.D. Torricelli's law an ideal example of elementary ODE // Amer. Math. Monthly, 1998. Vol. 105. No. 5. Pp. 453. DOI: 10.1080/00029890.1998.12004909
26. Atkin K. Investigating the Torricelli law using a pressure sensor with the Arduino and MakerPlot. Phys. Educ., 2018. Vol. 53. No. 6. Pp. 065001. DOI: 10.1088/1361-6552/aad680
27. Williams H. Vessel drainage under the influence of gravity. Phys. Teacher, 2019. Vol. 59, No. 8. Pp. 629. DOI: 10.1119/5.0020444
28. Villermaux E., Pomeau Y. Super free fall. J. Fluid Mech., 2010. Vol. 642, No. 1. Pp. 147. DOI: 10.1017/S0022112009992424
29. Treviňo C., Peralta S., Torres A., Medina A. Super free fall of an inviscid liquid through interconnected vertical pipes. Europhys. Lett., 2015. Vol. 112. No. 1. Pp. 14002. DOI: 10.1209/0295-5075/112/ 1400
30. Plastic Valvular Conduit - Tesla valve. Available at: https://www.gyroscope.com/d.asp?product=VC1 (accessed 10.06.2024)
31. Linkoln J. Electric field patterns made visible with potassium permanganate. Phys. Teacher, 2017. Vol. 55, No. 2. Pp. 74. DOI: 10.1119/1.4974114
32. Dubinov A.E., Kozhayeva J.P., Lubimtseva V.A., Selemir V.D. Hydrodynamic and physicochemical phenomena in liquid droplets under the action of nanosecond spark discharges: A review. Adv. Colloid Interface Sci., 2019. Vol. 271. No. 1. Pp. 101986. DOI: 10.1016/j.cis.2019.07.007
33. Dekhtyar V.A., Dubinov A.E. Visualization of liquids flows in microvluidics and plasma channels in nanosecond spark microdischarges by means of digital microscopy. Sci. Visualization, 2023. Vol. 15. № 1. Pp. 1. DOI: 10.26583/sv.15.1.01
34. Pearson R.S. Manganese color reactions. J. Chem. Educ., 1988. Vol. 65. No. 5. Pp. 451. DOI: 10.1021/ed065p451
35. Dubinov A.E., Iskhakova D.N., Lyubimtseva V.A. An inversion of contact angle hysteresis when a liquid drop slides up on an inclined plane under the spark discharge action. Phys. Fluids, 2021. Vol. 33. No. 6. Pp. 061707. DOI: 10.1063/5.0055862
36. Dubinov A.E., Dubinova I.D. Added point-like weight increases the levitation time of the falling soft coil spring. Mech. Res. Comm., 2012. Vol. 113. No. 1. Pp. 103670. DOI: 10.1016/j.mechrescom.2021.103670
37. Kuhn J., Vogt P. Smartphones as mobile minilabs in physics: Edited volume featuring more than 70 examples from 10 years the physics teacher-column iPhysicsLabs. Cham, Switzerland, Springer Nature, 2022. https://link.springer.com/book/10.1007/978-3-030-94044-7
Review
For citations:
Iskhakova D.N., Kolesov H.N., Dubinov A.E. EXPERIMENTAL RESEARCH OF WATER OUTFLOW FROM A VERTICAL TUBE THROUGH A TESLA VALVE. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(5):293-302. (In Russ.) https://doi.org/10.26583/vestnik.2024.5.2. EDN: JZCTNT