Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

EXPERIMENTAL RESEARCH OF WATER OUTFLOW FROM A VERTICAL TUBE THROUGH A TESLA VALVE

https://doi.org/10.26583/vestnik.2024.5.2

EDN: JZCTNT

Abstract

The modes of the water outflow from a vertical cylindrical vessel through a Tesla valve connected in direct or reverse directions were experimentally studied. The kinematics of the water level decrease in the vessel was recorded. It was found that the time of the vessel emptying through a Tesla valve considerably exceeds the time of the vessel emptying through an ordinary tube of a smaller cross-section (both for direct and reverse switching on of the valve). Emptying of the valve at the direct switching on is twice faster than at the reverse one. The velocity of the water column level decreases with time linearly. The obtained data prove that the valve has diodicity, and that the liquid outflow from the vessel through the Tesla valve follow to some analog of the Torricelli's law kinematically with different effective slowing factors.

About the Authors

Dj. N. Iskhakova
Sarov Institute of Physics and Technology – Branch of National Research Nuclear University «Moscow Engineering Physics Institute» (SarFTI–NRNU MEPhI)
Russian Federation


H. N. Kolesov
Sarov Institute of Physics and Technology – Branch of National Research Nuclear University «Moscow Engineering Physics Institute» (SarFTI–NRNU MEPhI); Russian Federal Nuclear Center – All-Russia Scientific and Research Institute of Experimental Physics (RFNC–VNIIEF)
Russian Federation


A. E. Dubinov
Sarov Institute of Physics and Technology – Branch of National Research Nuclear University «Moscow Engineering Physics Institute» (SarFTI–NRNU MEPhI); Russian Federal Nuclear Center – All-Russia Scientific and Research Institute of Experimental Physics (RFNC–VNIIEF)
Russian Federation


References

1. Cheney M., Uth R. Tesla, master of lightning. New York, Barnes & Noble Publishing, 1999. 184 p. https://teslauniverse.com/nikola-tesla/books/tesla-master-lightning

2. Tesla N. Valvular conduit, Patent US 1329559, 1920. https://patentimages.storage.googleapis.com/26/ 65/c7/c647a84af1f78f/US1329559.pdf

3. Thompson S.M., Ma H.B., Wilson C. Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. Experim. Thermal Fluid Sci., 2011. Vol. 35. No. 7. Pp. 1265. DOI: 10.1016/j.expthermflusci.2011.04.014

4. Nobakht A.Y., Shahsavan M., Paykani A. Numerical study of diodicity mechanism in different Tesla-type microvalves. J. Appl. Res. Techn., 2013. Vol. 11, No. 6. Pр. 876. DOI: 10.1016/S1665-6423(13)71594-3

5. Mohammadzadeh K., Kolahdouz E.M., Shirani E., Shafii M.B. Numerical study on the performance of Tesla type microvalve in a valveless micropump in the range of low frequencies. J. Micro-Bio Robot., 2013. Vol. 8. No. 1. Pp. 145. DOI: 10.1007/s12213-013- 0069-1

6. Wang C.-T., Chen Y.-M., Hong P.-A., Wang Y.-T. Tesla valves in micromixers. Int. J. Chem. Reactor Eng., 2014. Vol. 12. No. 1. Pp. 397. DOI: 10.1515/ijcre-2013-0106

7. de Vries S.F., Florea D., Homburg F.G.A., Frijns A.J.H. Design and operation of a Tesla-type valve for pulsating heat pipes. Int. J. Heat Mass Transfer, 2017. Vol. 105, No. 1. Pp. 1‒11. DOI: 10.1016/j.ijheatmasstransfer.2016.09.062

8. Qian J.-Y., Chen M.-R., Gao Z.-X., Jin Z.-J. Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression. Energy, 2019. Vol. 179. No. 1. Pp. 647. DOI: 10.1016/j.energy.2019.05.064

9. Abdelwahed M., Chorfi N., Malek R. Reconstruction of Tesla micro-valve using topological sensitivity analysis. Adv. Nonlinear Anal., 2020. Vol. 9. No. 1. Pp. 567. DOI: 10.1515/anona-2020-0014

10. Nguyen Q.M., Abouezzi J., Ristroph L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nature Comm., 2021. Vol. 12. No. 1. Pp. 2884. DOI: 10.1038/s41467-021-23009-y

11. Bohm S., Phi H.B., Moriyama A., Runge E., Strehle S., König J., Cierpka C., Dittrich L. Highly efficient passive Tesla valves for microfluidic applications. Microsyst. & Nanoeng., 2022. Vol. 8. No. 1. Pp. 97. DOI: 10.1038/s41378-022-00437-4

12. Hu P., Wang P., Liu L., Ruan X., Zhang L., Xu Z. Numerical investigation of Tesla valves with a variable angle. Phys. Fluids, 2022. Vol. 34. No. 3. Pp. 033603. DOI: 10.1063/5.0084194

13. Buglie W.L.N., Tamrin K.F., Sheikh N.A., Yasin M.F.M., Mohamaddan S. Enhanced fluid mixing using a reversed multistage Tesla micromixer. Chem. Eng. Technol., 2022. Vol. 45. No. 7. Pp. 1255. DOI: 10.1002/ceat.202200055

14. Li X., Worrall K., Vedanthu A., Scott-George A., Harkness P. The pulse-elevator: A pump for granular materials. Acta Astronautica, 2022. Vol. 200. No. 1. Pp. 33. DOI: 10.1016/j.actaastro.2022.07.052

15. Wang J., Cui B., Liu H., Chen X., Li Y., Wang R., Lang T., Yang H., L. Li, Pan H., Quan J., Chen Y., Xu J., Liu Y. Tesla valve-based flexible microhybrid chip with unidirectional flow properties. ASC Omega, 2022. Vol. 7. No. 36. Pp. 31744. DOI: 10.1021/acsomega. 2c02075

16. Andriukaitis D., Vargalis R., Šerpytis L., Drevinskas T., Kornyšova O., Stankevičiu M., Bimbiraitė-Survilienė K., Kaškonienė V., Maruškas A.S., Jonušauskas L. Fabrication of microfluidic Tesla valve employing femtosecond bursts. Micromachines, 2022. Vol. 13. No. 8. Pp. 1180. DOI: 10.3390/mi13081180

17. Wang P., Hu P., Liu L., Xu Z., Wang W., Scheid B. On the diodicity enhancement of multistage Tesla valves. Phys. Fluids, 2023. Vol. 35. No. 5. Pp. 052010. DOI: 10.1063/5.0145172

18. Purwidyantri A., Prabowo B.A. Tesla valve microfluidics: the rise of forgotten technology. Chemosensors, 2023. Vol. 11. No. 4. Pp. 256. DOI: 10.3390/chemosensors11040256

19. Wang Y., He Y., Xie X., Huang Z., Xu H., Hu Q., Ma C. Design and simulation of a new near zero-wear non-contact self-impact seal based on the Tesla valve structure. Lubricants, 2023. Vol. 11. No. 3. Pp. 102. DOI: 10.3390/lubricants11030102

20. Zeng G., Xu M., Mou J., Hua C., Fan C. Application of Tesla valve’s obstruction characteristics to reverse fluid in fish migration. Water, 2023. Vol. 15. No. 1. P. 40. DOI: 10.3390/w15010040

21. Stith D. The Tesla valve – a fluidic diode. Phys. Teacher, 2019. Vol. 57. No. 3. P. 201. DOI: 10.1119/1.5092491

22. Nguyen Q.M., Huang D., Zauderer E., Roma¬ne-lli G., Meyer C.L., Ristroph L. Tesla’s fluidic diode and the electronic-hydraulic analogy. Amer. J. Phys., 2021. Vol. 89. No. 3. Pp. 393. DOI: 10.1119/10.0003395

23. Kolesov H.N., Dubinov A.E. Custom-made tubular Tesla valves for laboratory lessons in classroom. Phys. Fluids, 2024. Vol. 36. No. 5. Pp. 051801. DOI: 10.1063/5.0203900

24. Leigh S.C., Summers A.P., Hoffmann S.L., German D.P. Shark spiral intestines may operate as Tesla valves. Proc. Royal Soc. B, 2021. Vol. 288, No. 1955. Pp. 20211359. DOI: 10.1098/rspb.2021.1359

25. Driver R.D. Torricelli's law  an ideal example of elementary ODE // Amer. Math. Monthly, 1998. Vol. 105. No. 5. Pp. 453. DOI: 10.1080/00029890.1998.12004909

26. Atkin K. Investigating the Torricelli law using a pressure sensor with the Arduino and MakerPlot. Phys. Educ., 2018. Vol. 53. No. 6. Pp. 065001. DOI: 10.1088/1361-6552/aad680

27. Williams H. Vessel drainage under the influence of gravity. Phys. Teacher, 2019. Vol. 59, No. 8. Pp. 629. DOI: 10.1119/5.0020444

28. Villermaux E., Pomeau Y. Super free fall. J. Fluid Mech., 2010. Vol. 642, No. 1. Pp. 147. DOI: 10.1017/S0022112009992424

29. Treviňo C., Peralta S., Torres A., Medina A. Super free fall of an inviscid liquid through interconnected vertical pipes. Europhys. Lett., 2015. Vol. 112. No. 1. Pp. 14002. DOI: 10.1209/0295-5075/112/ 1400

30. Plastic Valvular Conduit - Tesla valve. Available at: https://www.gyroscope.com/d.asp?product=VC1 (accessed 10.06.2024)

31. Linkoln J. Electric field patterns made visible with potassium permanganate. Phys. Teacher, 2017. Vol. 55, No. 2. Pp. 74. DOI: 10.1119/1.4974114

32. Dubinov A.E., Kozhayeva J.P., Lubimtseva V.A., Selemir V.D. Hydrodynamic and physicochemical phenomena in liquid droplets under the action of nanosecond spark discharges: A review. Adv. Colloid Interface Sci., 2019. Vol. 271. No. 1. Pp. 101986. DOI: 10.1016/j.cis.2019.07.007

33. Dekhtyar V.A., Dubinov A.E. Visualization of liquids flows in microvluidics and plasma channels in nanosecond spark microdischarges by means of digital microscopy. Sci. Visualization, 2023. Vol. 15. № 1. Pp. 1. DOI: 10.26583/sv.15.1.01

34. Pearson R.S. Manganese color reactions. J. Chem. Educ., 1988. Vol. 65. No. 5. Pp. 451. DOI: 10.1021/ed065p451

35. Dubinov A.E., Iskhakova D.N., Lyubimtseva V.A. An inversion of contact angle hysteresis when a liquid drop slides up on an inclined plane under the spark discharge action. Phys. Fluids, 2021. Vol. 33. No. 6. Pp. 061707. DOI: 10.1063/5.0055862

36. Dubinov A.E., Dubinova I.D. Added point-like weight increases the levitation time of the falling soft coil spring. Mech. Res. Comm., 2012. Vol. 113. No. 1. Pp. 103670. DOI: 10.1016/j.mechrescom.2021.103670

37. Kuhn J., Vogt P. Smartphones as mobile minilabs in physics: Edited volume featuring more than 70 examples from 10 years the physics teacher-column iPhysicsLabs. Cham, Switzerland, Springer Nature, 2022. https://link.springer.com/book/10.1007/978-3-030-94044-7


Review

For citations:


Iskhakova D.N., Kolesov H.N., Dubinov A.E. EXPERIMENTAL RESEARCH OF WATER OUTFLOW FROM A VERTICAL TUBE THROUGH A TESLA VALVE. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(5):293-302. (In Russ.) https://doi.org/10.26583/vestnik.2024.5.2. EDN: JZCTNT

Views: 143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)