REPRESENTATION OF SOLUTIONS TO THE NONLINEAR HEAT CONDUCTIVITY EQUATION BY TRIGONOMETRIC SERIES
https://doi.org/10.26583/vestnik.2024.330
EDN: ODCDWC
Abstract
The paper considers the nonlinear heat equation in a one-dimensional plane-symmetric case. For him, on the interval [0; p] the Cauchy problem with continuous initial data is posed. These data evenly continue to the segment [–p; 0], and then with a period of 2p on the entire numerical axis. The solution to the resulting Cauchy problem is represented in the form of a corresponding trigonometric series in cosines from the spatial variable. The coefficients of the series are the desired functions of time. For these coefficients, an infinite system of ordinary differential equations is given with the corresponding initial conditions. Finite segments of trigonometric sums are constructed that approximately convey the solutions of the considered Cauchy problems.
About the Authors
S. P. BautinRussian Federation
I. A. Vazieva
Russian Federation
References
1. . Leibenzon L.S. Sobranie trudov. Tom 2. Podzemnaya gazogigrodinamika [Collection of works. Vol. 2. Underground gas hydrodynamics]. Moscow, Izd-vo AN SSSR Publ., 1953. 544 p.
2. Oleinik O.A., Kalashnikov A.S., Yu-lin Zhou. Zadacha Koshy i kraevye zadachi dlay uravnnenii tipa nestacyonarnoi filtracyi. [The Cauchy problem and boundary value problems for equations of the nonstationary filtration type.] // Izvestiya AN SSSR. Mathematics series. 1958. Vol. 22. Iss. 5. Pp. 667–704 (in Russian).
3. Ladyzhenskaya O.A., Solonnikov V. A., Uraltseva N. N. Lineinye I kvazilineinye uravneniya parabolicheskogo vida. [Linear and quasi-linear equations of parabolic type]. Moscow, Nauka Publ., 1967. 736 p.
4. Barenblatt G.I., Kolesnikov V.M., Ryzhik V.M. Teoriya nestacyonarnoi filtracyi [Theory of unsteady filtration of liquid and gas]. Moscow, Nedra Publ., 1972. 288 p.
5. Vazquez J.L. The Porous Medium Equation: Mathematical Theory. Oxford: Clarendon Press, 2007. 648 p.
6. Vasin V.V., Sidorov A.F. O necotoryh metodah priblizennogo resheniya differencyalnyh i integralnyh uravnenii. [On some methods of approximate solution of differential and integral equations]. Izvestiya vuzov. Mathematics, 1983. No. 7 (254). Pp. 13–27 (in Russian).
7. Bautin S.P. Primenenie harakteristicheskih raydov dlya predstavleniay reshenii nelineinyh uravnenii parabolicheskogo vida v okrestnosti linii vyrozdeniya [Application of characteristic series to represent solutions of nonlinear parabolic equations in surroundings of the degeneracy line]. Chislennye metody mekhaniki sploshnoj sredy, 1985. Vol. 16. No. 5. Pp. 16–28 (in Russian).
8. Bautin S.P. Sushestvovanie analiticheskoi teplovoi volny, opredelayemoi zadannym kraevym rezymom. [The existence of an analytical heat wave determined by a given boundary regime]. Sibirskij zhurnal industrial'noj matematiki, 2003. Vol. VI. No. 1(13). Pp. 3–11 (in Russian).
9. Bautin S.P. Analiticheskaya teplovaya volna [Analytical heat wave]. Moscow, Fizmatlit Publ., 2003. 88 p.
10. Rubina L.I., Ulyanov O.N. Ob odnom metode resheniya uravnenia nelineinoi filtracyi. [On one method for solving the nonlinear filtration equation]. Sibirskij matematicheskij zhurnal, 2012. Vol. 53. No. 5 (in Russian).
11. Kazakov A.L., Lempert A.A. O sushestvovanii i edinstvennosti resheniya kraevoi zadachi dlay parabolicheskogo uravneniya nestacionarnoi filtracyi [On the existence and uniqueness of a solution to a boundary value problem for a parabolic equation of non-stationary filtration]. Prikladnaya mekhanika i tekhnicheskaya fizika, 2013. Vol. 54. No. 2(318). Pp. 97–105 (in Russian).
12. Bautin S.P., Zamyslov V.E., Skachkov P.P. Matematicheskoe modelirovanie rigonometricheskimi raydami odnomernyh techenii vayzkogo tehljprovosnogo gaza. [Mathematical modeling of one-dimensional flows of viscous heat-conducting gas using trigonometric series]. Novosibirsk, Nauka Publ.; Yekaterinburg, USURT Publ., 2014. 91 p.
13. Bautin S.P., Zamyslov V.E. Predstavlenie resenii uravneniya Burgersa trigonometricheskimi raydami. [Representation of solutions of the Burgers equation by trigonometric series] // Vestnik NIYaU MIFI, 2022. Vol. 11. No. 4. Pp. 305–318 (in Russian).
14. Bautin S.P., Karelina O.A., Obukhov A.G. Predstavlenie reshenii sistemy uravnenii dvizeniya s pomoshiu trigonometricheskih raydov. [Representation of solutions of the system of equations of motion using trigonometric series]. Vestnik NIYaU MIFI, 2023. Vol. 12. No. 1. Pp. 39–51 (in Russian).
15. Bautin S.P., Karelina O.A., Obukhov A.G. Nekotorye nestachyonarnye dvumernye techeniya gaza, opredelyaemye s pomoshiu trigonometricheskih raydov. [Some unsteady two-dimensional gas flows determined using trigonometric series]. Vestnik NIYaU MIFI, 2023. Vol. 12. No. 4. Pp. 223–232.
Review
For citations:
Bautin S.P., Vazieva I.A. REPRESENTATION OF SOLUTIONS TO THE NONLINEAR HEAT CONDUCTIVITY EQUATION BY TRIGONOMETRIC SERIES. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(3):154-159. (In Russ.) https://doi.org/10.26583/vestnik.2024.330. EDN: ODCDWC