Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Stability of a Wigner–Seitz cell During Partial Violation of Electroneutrality in the LDA-approximation

https://doi.org/10.56304/S2304487X19040035

Abstract

   On the basis of the Gellmann–Feynman theorem for an isolated Wigner–Zeitz cell, the dependence of the binding energy on the electron deficit has been calculated. The critical parameter of the average number of electrons the removal of which leads to the destruction of a given element has been estimated for 38 metals. The stability of metals is violated when removing about 13.1–13.4% of the available conduction electrons, and the critical charge depends nonmonotonically on the atomic number of the element. The calculations have been performed within the local density model and compared to the results obtained using the free electron model. It has been shown that the calculations within these models give close results, which allows us to use the free electron gas approximation for further estimates. Analysis of the results has showed that the critical parameter determining the stability of the cell depends on the classification among transition or non-transition metals and on its average size. It has been found that the main parameters affecting the stability of the metal are the enthalpy of atomization and the energy of the lowest state of the valence electron in an isolated atom. Calculations have shown that the critical parameter determining the stability of the metal depends almost linearly on the enthalpy of atomization, which allows us to extrapolate experimental data obtained by measuring the enthalpy in a small electron deficit to its critical value.

About the Authors

К. М. Erokhin
Federal State Budgetary Educational Institution of Higher Education Moscow Polytechnic University
Russian Federation

107023

Moscow



N. P. Kalashnikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Zajman Dzh. Printsipy teorii tvyordogo tela. [Principles of the theory of solids] М.: Mir, 1966. 472 p.

2. Ashkroft N. W. and Mermin N. D. Solid State Physics Holt, Rinehart and Winston, New York NY u. a. ISBN 0-03-049346-3 (1976).

3. Zhuravlev V. А. Lektsii po kvantovoj teorii metallov. [Lectures on the quantum theory of metals] M.: Institut komp’yuternykh issledovanij, 2002. 240 p.

4. Erokhin K. M., Kalashnikov N. P., Nesterikhin Yu. E., Ol’chak А. S. Kulonovskij vzryv shhelochnykh i perekhodnykh metallov pri chastichnom udalenii ehlektronov provodimosti. [Coulomb explosion of alkali and transition metals with partial removal of conduction electrons] Doklady RАN, 2010, vol. 436, no. 4, p. 1 (in Russian).

5. Erokhin K. M., Kalashnikov N. P. Zavisimost’ ehnergii svyazi kristallicheskoj reshetki metallov ot srednego chisla ehlektronov provodimosti. [The dependence of the binding energy of the crystal lattice of metals on the average number of conduction electrons.] Fizika tverdogo tela, 2017, vol. 59, no. 9, p. 1667 (in Russian).

6. Gel’man G. Kvantovaya khimiya. [Quantum chemistry] Ob’edinennoe nauchno-tekhnicheskoe izdatel’stvo NKTP SSSR, 1937. 546 p.

7. Feynman R. P. Forces in Molecules. Phys. Rev., 1939, vol. 56, p. 340.

8. Bajkov Yu. А., Kuznetsov V. M. Kvantovaya mekhanika. [Quantum Mechanics] M.: EHl. izd. BINOM, 2013. 291 p.

9. Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B., 1964, vol. 136, p. 864.

10. Kohn W. Nobel Lecture: Electronic structure of matter – wave functions and density functionals. Reviews of Modern Physics, Vol. 71, No. 5, October 1999 0034-6861/99/71(5)/1253(14).

11. Kirzhiits D. D., Lozovik Yu. Έ., Shpatakovsnaya G. V. Statisticheskaya model' veshhestva. [Statistical model of a substance] UFN, 1975, vol. 117, no. 1, p. 4 (in Russian).

12. Teoriya neodnorodnogo ehlektronnogo gaza [The Theory of Inhomogeneous Electron Gas], pod red. Lundkvista S., Marcha N. М.: Mir, 1987. 397 p.

13. March N. H. Electron Density Theory of Atoms and Molecules. Academic Press, 1992. ISBN 978-0-12-470525-8.

14. Feynman R. P., Metropolis N., and Teller E. Equations of state of elements based on the generalized Thomas–Fermi theory. Phys. Rev., 1949, vol. 75, p. 1561.

15. Partenskij M. V. Samosoglasovannaya ehlektronnaya teoriya metallicheskoj poverkhnosti. [Self-consistent electron theory of a metal surface] UFN, 1979, vol. 128, no. 1, p. 69 (in Russian).

16. Rusek M., Lagadec H., and Blenski T. Cluster explosion in an intense laser pulse: Thomas-Fermi model. Phys. Rev. A, 2000, vol. 63, 013203.

17. Kittel’ Ch. Vvedenie v fiziku tverdogo tela. [Introduction to solid state physics] M.: Nauka, 1978. 789 p.

18. Erokhin K. M., Kalashnikov N. P. Raschet ustojchivosti yachejki Vignera–Zejca metallov v usloviyah chastichnogo narusheniya ih elektronejtral’nosti v modeli svobodnyh elektronov. [Calculation of the Stability of the Wigner-Seitz Cell in Metals under Conditions of Partial Violation of their Electroneutrality in the Model of Free Electrons]. Sb. Vysshaya shkola. Novye tekhnologii nauki, tekhniki, pedagogiki. [High education. New technologies of science, engineering, pedagogics]. Materialy Vserossijskoj nauchno-prakticheskoj konferencii “Nauka – Obshchestvo – Tekhnologii – 2018” [Proceedings of the All-Russian scientific – practical conference “Science-Society-Technology 2018”]. Russia, Moscow. 2018. In Russian.


Review

For citations:


Erokhin К.М., Kalashnikov N.P. Stability of a Wigner–Seitz cell During Partial Violation of Electroneutrality in the LDA-approximation. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(4):299-308. (In Russ.) https://doi.org/10.56304/S2304487X19040035

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)