Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

A NONLINEAR FINITE-DIFFERENCE SCHEME WITH A LIMITER FOR RADIATION TRANSPORT SIMULATION

https://doi.org/10.26583/vestnik.2024.348

EDN: HZCNVX

Abstract

Numerical modeling of non-stationary radiation transfer process in the kinetic model is a very labor-intensive task. The complexity is caused by the large dimension of the problem and, additionally, for radiant energy transfer problems – by strong nonlinearity. For deterministic approaches based on discretization of the particle flight direction, it is necessary to solve a system of hyperbolic equations of large dimension. Accordingly, it is desirable that the schemes used for numerical modeling are economical both in terms of memory use and calculation time and show acceptable results for a wide range of Courant numbers. In the case of radiant transfer, the situation is aggravated by the strong nonlinearity of the problem being solved, which leads to a significant change in the properties of the medium at time steps. This imposes increased requirements for the monotonicity of the schemes with a change in optical thickness. According to Godunov's theorem, among two-layer linear schemes in time, there are no monotonic schemes of a higher approximation order. One of the directions of solving this problem is the development of NFC (Nonlinear Flux Correction) schemes of end-to-end counting, in which an increased order of accuracy on smooth solutions and monotonicity are achieved due to nonlinear correction of flows. The numerical solution is monotonized using a special algorithm in the vicinity of large gradients of the exact solution. The paper provides a brief overview and characteristics of the finite-difference scheme developed and successfully used for many years at RFNC-VNIITF to solve radiation transfer problems. The TVD (Total Variation Diminishing) methodology is used to monotonize the scheme.

About the Author

V. V. Zavyialov
FSUE «RFNC-VNIITF named after Academ. E.I. Zababakhin»
Russian Federation


References

1. Bass L.P., Voloshhenko A.M., Germogenova T.A. Metody diskretnyh ordinat v zadachah o perenose izlucheniya [Methods of Discrete Ordinates in Radiation Transport Problems]. Moscow, IPM AN USSR Publ., 1986. 231 p. (in Russian).

2. Pomraning G.C. The Equations of Radiation Hydrodynamics. New York, Dover Publications Inc., 2005, 286 p.

3. Godunov S.K. Raznostnyj metod chislennogo rascheta razryvnyh reshenij uravnenij gidrodinamiki [Difference method for numerical calculation of discontinuous solutions of hydrodynamic equations]. Matematicheskij sbornik, 1959. Vol. 47(89). No. 3. Pp. 271–306. (in Russian).

4. Gadzhiev A.D., Zaviyalov V.V., Shestakov A.A. Primenenie TVD podhoda k DSn metodu resheniya uravneniya perenosa teplovogo izlucheniya [Application of the TVD Approach to the DSn Method for Solving the Thermal Radiation Transfer Equation]. VANT, Se¬riya «Matematicheskoe modelirovanie fizicheskih processov», 2009. Iss. 2. Pp. 37–48 (in Russian).

5. Gadzhiev A.D., Zaviyalov V.V., Shestakov A.A. Primenenie TVD podhoda k DSn metodu resheniya uravneniya perenosa teplovogo izlucheniya v osesimmetrichnoj RZ geometrii [Application of the TVD Approach to the DSn Method for Solving the Equation of Thermal Radiation Transfer in Axisymmetric RZ Geometry]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2010. Iss. 2. Pp. 30–39 (in Russian).

6. Arsent`ev A.P., Pisarev V.N. Osobennosti primeneniya TVD podhoda k DSn metodu resheniya trekhmernogo uravneniya perenosa nejtronov v krivolinejnoj sisteme koordinat [Features of the Application of the TVD Approach to the DSn Method for Solving the Three-dimensional Neutron Transport Equation in a Curvilinear Coordinate System]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2011. Iss. 1. Pp. 25–39 (in Russian).

7. Shestakov A.A. TVDR skhemy dlya resheniya sistemy uravnenij perenosa teplovogo izlucheniya [TVDR Schemes to Solve a System of Radiative Heat Transfer Equations]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2019. Iss. 2. Pp. 17–36 (in Russian).

8. Gadzhiev A.D., Koshutin D.A., Shestakov A.A. DSn metod s TVD rekonstrukciej i sinteticheskim P1SA metodom uskoreniya iteracij dlya chislennogo resheniya dvumernogo uravneniya perenosa teplovogo izlucheniya v osesimmetrichnoj RZ geometrii [DSn Method with TVD Reconstruction and Synthetic P1SA Iteration Acceleration Method for the Numerical Solution of the Two Dimensional Equation of Thermal Radiation Transfer in Axisymmetric RZ Geometry]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2016. Iss. 4. Pp. 13–19 (in Russian).

9. Gadzhiev A.D., Grabovenskaya S.A., Zaviya-lov V.V., Shestakov A.A. Primenenie TVD podhoda k resheniyu uravneniya perenosa teplovogo izlucheniya kvazidiffuzionnym metodom [Application of the TVD Approach to Solving the Equation of Thermal Radiation Transfer Using the Quasidiffusion Method]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2010. Iss. 3. Pp. 3–14 (in Russian).

10. Grabovenskaya S.A., Zaviyalov V.V., Shestakov A.A. O dvuh podhodah effektivnogo ponizheniya razmernosti dlya zadach perenosa teplovogo izlucheniya v mnogomernoj geometrii [Two Approaches to Effectively Reduce the Size tf Radiative Heat Transfer Problems in Multidimensional Geometry]. Matematicheskoe modelirovanie, 2021. Vol. 33. No. 9. Pp. 35–46.

11. Egorova A.S., Karlyhanov N.G. Reshenie kineticheskogo uravneniya perenosa izlucheniya metodom usrednennyh kosinusov [Solution of the Kinetic Equation of Radiation Transfer by the Averaged Cosine Method]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2011. Iss. 3. Pp. 29–38 (in Russian).

12. Isakova A.S., Karlyhanov N.G. Sravnitel'nyj analiz kvazidiffuzionnogo podhoda i metoda usrednennyh kosinusov dlya resheniya kineticheskogo uravneniya perenosa izlucheniya [Comparative Analysis of the Quasidiffusion Approach and the Averaged Cosine Method for Solving the Kinetic Equation of Radiative Transfer]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2013. Iss. 3. Pp. 16–29 (in Russian).

13. Vershinskaya A.S., Gadzhiev A.D., Gra¬bo¬ven-skaya S.A., Shestakov A.A. Primeneniya TVD podhoda k resheniyu uravneniya perenosa teplovogo izlucheniya v P1 priblizhenii [Applications of the TVD Approach to Solving the Thermal Radiation Transfer Equation in the P1 Approximation]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2009. Iss. 2. Pp. 21–36 (in Russian).

14. Gadzhiev A.D., Chubareshko I.S., Shestakov A.A. Neyavnyj konechno-ob"emnyj TVD metod dlya chislennogo resheniya dvumernogo uravneniya perenosa teplovogo izlucheniya v P1 priblizhenii [Implicit Finite Volume TVD Method for the Numerical Solution of the 2D Thermal Radiation Transport Equation in the P1 Approximation]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2017. Iss. 2. Pp. 18–29 (in Russian).

15. Barabanov S. K. Sxemy tipa TVD dlya chislennogo resheniya dvumernogo kineticheskogo uravneniya perenosa v dekartovoj sisteme koordinat na nestrukturirovannyh setkah [TVD-type schemes for the numerical solution of the two-dimensional kinetic transport equation in a Cartesian coordinate system on unstructured grids]. // Cbornik dokladov 16-j nauchno-tehnicheskoj konferencii «Molodezh v nauke», Sarov, 2017. Vol. 1. Pp. 45–50 (in Russian).

16. Kulikovskij A.G., Pogorelov N.V., Semenov A.Yu. Matematicheskie voprosy chislennogo resheniya giperbolicheskih sistem uravnenij [Mathematical Problems of Numerical Solution of Hyperbolic Systems]. Moscow, FIZMATLIT Publ., 2012. 656 p. (in Russian).

17. Yee N.S. A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods. NASA Ames Research Center Computational Fluid Dynamics Branch, California, 94035 USA, 1989. 218 p.

18. Chirkov D.V., Chernyj S.G. Sravnenie tochnosti i skhodimosti nekotoryh TVD skhem [Comparison of Accuracy and Convergence of Some TVD Schemes]. Vychislitel'nye tekhnologii, 2000. Vol. 5. No. 5. Pp. 86–107 (in Russian).

19. Gadzhiev A.D., Kondakov I.A., Pisarev V.N., Starodumov O.I., Shestakov A.A. Metod diskretnyh ordinat s iskusstvennoj dissipaciej (DDAD-skhema) dlya chislennogo resheniya uravneniya perenosa nejtronov [Discrete Ordinate Method with Artificial Dissipation (DDAD-scheme) for Numerical Solution of the Neutron Transport Equation]. VANT, Seriya «Matematicheskoe modelirovanie fizicheskih processov», 2003. Iss. 4. Pp. 13–24 (in Russian).

20. Hakimzyanov G.S., Shokina N.Yu. Nekotorye zamechaniya o skhemah, sohranyayushchih monotonnost' chislennogo resheniya [Some Notes on Monotonicity Preserving Schemes]. Vy`chislitel`ny`e texnologii, 2012. Vol. 17. No. 2. Pp. 78–98 (in Russian).


Review

For citations:


Zavyialov V.V. A NONLINEAR FINITE-DIFFERENCE SCHEME WITH A LIMITER FOR RADIATION TRANSPORT SIMULATION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(4):221-231. (In Russ.) https://doi.org/10.26583/vestnik.2024.348. EDN: HZCNVX

Views: 125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)