Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Nonlinear Reaction–Diffusion Equations with Variable Coefficients: Method for Finding Exact Solutions in an Implicit Form

https://doi.org/10.1134/S2304487X1903009X

Abstract

   Various classes of nonlinear reaction–diffusion equations with variable coefficients c(x)u= [a(x)f(u)ux]+ b(x)g(u), which is based on the representation of the solution in the implicit form ∫ h(u)du = ξ(x)w(t) + η(x), x(u),where the functions h(u), ξ(x), and w(t) are determined during the study of arising functional differential equations. Examples of specific reaction–diffusion equations and their exact solutions are given. The main attention is paid to nonlinear equations of a sufficiently general form, which contain several arbitrary functions that depend on the desired function u and the spatial variable x. Many new generalized traveling-wave solutions and functional separable solutions are described. It is important to note that solutions of such types are usually noninvariant (i. e., they cannot be obtained by classical Lie group analysis of differential equations).

About the Author

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Bauman Moscow State Technical University
Russian Federation

119526

115409

105005

Moscow



References

1. Ovsiannikov L. V., Gruppovye svoystva uravneniy nelineynoy teploprovodnosti (Group properties of non-linear heat equations), Doklady Acad. Nauk USSR, 1959, vol. 125, no. 3, pp. 492–495 (in Russian).

2. Dorodnitsyn V. A., Ob invariantnykh resheniyakh uravneniya nelineynoy teploprovodnosti s istochnikom (On invariant solutions of the nonlinear heat equation with a source), Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1982, vol. 22, no. 6, pp. 1393–1400 (in Russian).

3. Galaktionov V. A., Dorodnitsyn V. A., Yelenin G.G., Kurdyumov S. P., Samarskii A. A. A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures // J. Soviet Math. 1988. V. 41. № 5. P. 1222–1292.

4. Kudryashov N. A. On exact solutions of families of Fisher equations // Theor. Math. Phys. 1993. V. 94. № 2. P. 211–218.

5. Clarkson P. A., Mansfield E. L. Symmetry reductions and exact solutions of a class of nonlinear heat equations // Phys. D. 1994. V. 70. P. 250–288.

6. Galaktionov V. A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions // Nonlinear Anal. Theory. Methods. Appl. 1994. V. 23. P. 1595–621.

7. Ibragimov N. H. (Editor). CRC Handbook of Lie Group Analysis of Differential Equations. Symmetries, Exact solutions and Conservation Laws, Vol. 1. Boca Raton: CRC Press, 1994.

8. Zaitsev V. F., Polyanin A. D., Spravochnik po differentsial’nym uravneniyam s chastnymi proizvodnymi: tochnyye resheniya (Handbook of Partial Differential Equations: Exact Solutions), Moscow, International Program of Education, 1996 (in Russian).

9. Doyle Ph. W., Vassiliou P. J. Separation of variables for the 1-dimensional non-linear diffusion equation // Int. J. Non-Linear Mech. 1998. V. 33. № 2. P. 315–326.

10. Hood S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function – generalizations of Clarkson’s and Kruskal’s method // IMA J. Appl. Math. 2000. V. 64. № 3. P. 223–244.

11. Estevez P. G., Qu C., Zhang S. Separation of variables of a generalized porous medium equation with nonlinear source // J. Math. Anal. Appl. 2002. V. 275. P. 44–59.

12. Polyanin A. D., Zaitsev V. F., Spravochnik po nelineynym uravneniyam matematicheskoy fiziki (Handbook of non-linear equations of mathematical physics), Moscow, Fizmatlit, 2002 (in Russian).

13. Kaptsov O. V., Verevkin I. V. Differential constraints and exact solutions of nonlinear diffusion equations // J. Phys. A: Math. Gen. 2003. V. 36. P. 1401–1414.

14. Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinyh uravnenii matematicheskoi fiziki i mehaniki (Solution methods for nonlinear equations of mathematical physics and mechanics), Moscow, Fizmatlit, 2005 (in Russian).

15. Cherniha R. M., Pliukhin O. New conditional symmetries and exact solutions of nonlinear reaction–diffusion–convection equations // J. Physics A: Math. Theor. 2007. V. 40. № 33. P. 10049–10070.

16. Galaktionov V. A., Svirshchevskii S. R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Boca Raton: Chapman & Hall/CRC Press, 2007.

17. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd Edition. Boca Raton: CRC Press, 2012 (see also 1st Edition, 2004).

18. Cherniha R. M., Pliukhin O. New conditional symmetries and exact solutions of reaction–diffusion–convection equations with exponential nonlinearities // J. Math. Anal. Appl. 2013. V. 403. P. 23–37.

19. Cherniha R., Serov M., Pliukhin O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications. Boca Raton: Chapman & Hall/CRC Press, 2018.

20. Vaneeva O. O., Johnpillai, A. G., Popovych R. O., Sophocleous C. Extended group analysis of variable coefficient reaction–diffusion equations with power nonlinearities // J. Math. Anal. Appl. 2007. V. 330. № 2. P. 1363–1386.

21. Vaneeva O. O., Popovych R. O., Sophocleous C. Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source // Acta Applicandae Mathematicae. 2009. V. 106. № 1. P. 1–46.

22. Vaneeva O. O., Popovych R. O., Sophocleous C. Extended group analysis of variable coefficient reaction–diffusion equations with exponential nonlinearities // J. Math. Anal. Appl. 2012. V. 396. P. 225–242.

23. Vaneeva O., Zhalij A. Group classification of variable coefficient quasilinear reaction–diffusion equations // Publications de L’Institute Mathématique (Nouvelle série). 2013. V. 94. № 108. P. 81–90.

24. Polyanin A. D. Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients // Appl. Math. Comput. 2019. V. 347. P. 282–292.

25. Gandarias M. L., Romero J. L., Díaz J. M. Nonclassical symmetry reductions of a porous medium equation with convection // J. Phys. A: Math. Gen. 1999. V. 32. P. 1461–1473.

26. Popovych R. O., Ivanova N. M. New results on group classification of nonlinear diffusion–convection equations // J. Physics A: Math. General. 2004. V. 37. № 30. P. 7547–7565.

27. Ivanova N. M., Sophocleous C. On the group classification of variable-coefficient nonlinear diffusion-convection equations // J. Comput. Applied Math. 2006. V. 197. № 2. P. 322–344.

28. Ivanova N. M. Exact solutions of diffusion-convection equations // Dynamics of PDE. 2008. V. 5. № 2. P. 139–171.

29. Vaneeva O. O., Popovych R. O., Sophocleous C. Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification // Lobachevskii J. Mathematics. 2010. V. 31. № 2. P. 100–122.

30. Basarab-Horwath P., Lahno V., Zhdanov R. The structure of Lie algebras and the classification problem for partial differential equations // Acta Appl. Math. 2001. V. 69. P. 43–94.

31. Lagno V. I., Spichak S. V., Stognii V. I., Simmetriynyy analiz uravneniy evolyutsionnogo tipa (Symmetry analysis of evolution type equations), Moskva–Izhevsk: Institute of Computer Sciences, 2004 (in Russian).

32. Jia H., Zhao W. X. X., Li Z. Separation of variables and exact solutions to nonlinear diffusion equations with x-dependent convection and absorption // J. Math. Anal. Appl. 2008. V. 339. P. 982–995.

33. Cherniha R., Davydovych V. Nonlinear Reaction-Diffusion Systems: Conditional Symmetry, Exact Solutions and Their Applications in Biology. Springer, 2017.

34. Meleshko S. V., Moyo S. On the complete group classification of the reaction–diffusion equation with a delay // J. Math. Anal. Appl. 2008. V. 338. P. 448–466.

35. Polyanin A. D., Zhurov A. I. Exact solutions of linear and non-linear differential-difference heat and diffusion equations with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 54. P. 115–126.

36. Polyanin A. D., Zhurov A. I. Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 409–416.

37. Polyanin A. D., Zhurov A. I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 417–430.

38. Polyanin A. D., Zhurov A. I. New generalized and functional separable solutions to non-linear delay reaction-diffusion equations // Int. J. Non-Linear Mech. 2014. V. 59. P. 16–22.

39. Polyanin A. D., Zhurov A. I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions // Appl. Math. Letters 2014. V. 37. P. 43–48.

40. Polyanin A. D., Zhurov A. I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients // Int. J. Non-Linear Mech. 2014. V. 67. P. 267–277.

41. Polyanin A. D., Sorokin V. G. Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions // Appl. Math. Letters. 2015. V. 46. P. 38–43.

42. Polyanin A. D. Generalized traveling-wave solutions of nonlinear reaction–diffusion equations with delay and variable coefficients // Appl. Math. Letters. 2019. V. 90. P. 49–53.

43. Polyanin A. D., Zaitsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition. Boca Raton: Chapman & Hall/CRC Press, 2003.

44. Polyanin A. D., Zaitsev V. F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Boca Raton: CRC Press, 2018.


Review

For citations:


Polyanin A.D. Nonlinear Reaction–Diffusion Equations with Variable Coefficients: Method for Finding Exact Solutions in an Implicit Form. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(4):321-334. (In Russ.) https://doi.org/10.1134/S2304487X1903009X

Views: 97


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)