Preview

Вестник НИЯУ МИФИ

Расширенный поиск

О важности оптимизации точности и производительности алгоритмов отслеживания объектов в видеопотоке по параметрам

https://doi.org/10.1134/S2304487X19030052

Аннотация

Об авторе

А. Д. Егоров
Национальный исследовательский ядерный университет "МИФИ"
Россия

115409

Москва



Список литературы

1. Bradski G., Kaehler A. Learning OpenCV: Computer vision with the OpenCV library. “O’Reilly Media, Inc.”, 2008.

2. Al-Kaff A. et al. Survey of computer vision algorithms and applications for unmanned aerial vehicles // Expert Systems with Applications. 2018. Vol. 92. P. 447–463.

3. Buch N., Velastin S. A., Orwell J. A review of computer vision techniques for the analysis of urban traffic // IEEE Transactions on Intelligent Transportation Systems. 2011. Vol. 12. № 3. P. 920–939.

4. Alyushin M. V., Alyushin V. M., Kolobashkina L. V. “Methodological aspects of automated forecasting of emergency situations of technogenic origin”. Questions of psychology. 2016. V. 2. P. 83–90.

5. Alyushin M. V., Alyushin A. V., Belopolskiy V. M., Kolobashkina L. V., Ushakov V. D. “Optical Technologies for Monitoring Systems of the Current Functional State of the Operational Management Personnel of Nuclear Power Facilities”. Global Nuclear Safety. 2013. V. 2. № 7. P. 69–77.

6. Joskowicz L. Future Perspectives on Statistical Shape Models in Computer-Aided Orthopedic Surgery: Beyond Statistical Shape Models and on to Big Data // Computer Assisted Orthopaedic Surgery for Hip and Knee. Springer, Singapore, 2018. P. 199–206.

7. Куцый Н. Н. Параметрическая оптимизация систем с интегральной широтно-импульсной модуляцией с использованием беспоискового градиентного алгоритма / Н, Н. Куцый, Е. А. Осипова // Приборы и системы. Управление, контроль, диагностика. – 2012. – №. 1. – С. 2–6.

8. Кохно А. Г. Многокритериальная параметрическая оптимизация судовых автоматизированных систем: дисс. канд. техн. наук / А. Г. Кохно. – Санкт-Петербург. Санкт-Петербургский государственный университет водных коммуникаций, 2012.

9. Скляренко А. А. Методы решения задачи попиксельной s-аппроксимации мультитоновых изображений и их оптимизация / А. А. Скляренко. – Ростов-на-Дону: Издательский центр ДГТУ, 2012.

10. Dunai Dunai L. et al. Euro banknote recognition system for blind people // Sensors. 2017. Vol. 17. № 1. P. 184.

11. Bruce B. R., Aitken J. M., Petke J. Deep parameter optimization for face detection using the viola-jones algorithm in OpenCV // International Symposium on Search Based Software Engineering. Springer, Cham. 2016. P. 238–243.

12. Egorov A. D., Shtanko A. N., Minin P. E. Selection of Viola–Jones algorithm parameters for specific conditions // Bulletin of the Lebedev Physics Institute. 2015. Vol. 42. № 8. P. 244–248.

13. Smeulders A. W. M. et al. Visual tracking: An experimental survey // IEEE transaction on pattern analysis and machine intelligence. 2014. Vol. 36. № 7. P. 1442–1468.

14. Oron S. et al. Locally orderless tracking // International Journal of Computer Vision. 2015. Vol. 111. № 2. P. 213–228.

15. Briechle K., Hanebeck U. D. Template matching using fast normalized cross correlation // Optical Pattern Recognition XII. International Society for Optics and/Photonics, 2001. Vol. 4387. P. 95–103.

16. Ross D.A. et al. Incremental learning for robust visual tracking // International journal of computer vision. 2008. Vol. 77. № 1–3. P. 125–141.

17. Isard M., Blake A. A mixed-state condensation tracker with automatic model-switching // Computer Vision, 1998. Sixth International Conference on. IEEE, 1998. P. 107–112.

18. Mei X., Ling H. Robust visual tracking using ℓ 1 minimization // Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009. P. 1436–1443.

19. Ayvaci A., Raptis M., Soatto S. Sparse occlusion detection with optical flow // International journal of computer vision. 2012. Vol. 97. № 3. P. 322–338.

20. Nguyen H. T., Smeulders A. W. M. Robust tracking using foreground-background texture discrimination // International Journal of Computer Vision. 2006. Vol. 69. № 3. P. 277–293.

21. Godec M., Roth P. M., Bischof H. Hough-based tracking of non-rigid objects // Computer Vision and Image Understanding. 2013. Vol. 117. № 10. P. 1245–1256.

22. Salti S., Cavallaro A., Di Stefano L. Adaptive appearance modeling for video tracking: Survey and evaluation // IEEE Transactions on Image Processing. 2012. Vol. 21. № 10. P. 4334–4348.

23. Chan T. F., Vese L. A. Active contours without edges // IEEE Transactions on image processing. 2001. Vol. 10. № 2. P. 266–277.

24. Briechle K., Hanebeck U. D. Template matching using fast normalized cross correlation // Optical Pattern Recognition XII. International Society for Optics and Photonics, 2001. Vol. 4387. P. 95–103.

25. Shen X. et al. Detecting and aligning faces by image retrieval // Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013. P. 3460–3467.

26. Leibe B., Leonardis A., Schiele B. Robust object detection with interleaved categorization and segmentation // International journal of computer vision. 2008. Vol. 77. № 1–3. P. 259–289.

27. Ballard D. H. Generalizing the Hough transform to detect arbitrary shapes // Readings in computer vision. 1987. P. 714–725.

28. Felzenszwalb P. F. et al. Object detection with discriminatively trained part-based models // IEEE transactions on pattern analysis and machine intelligence. 2010. Vol. 32. № 9. P. 1627–1645.

29. Chen D. et al. Joint cascade face detection and alignment // European Conference on Computer Vision. Springer, Cham, 2014. P. 109–122.

30. Martins P., Caseiro R., Batista J. Generative face alignment through 2.5 d active appearance models // Computer Vision and Image Understanding. 2013. Vol. 117. № 3. P. 250–268.

31. Samoylov A. S. et al. Face tracking for a system of collecting statistics on visitors and quality assessment of its functioning // Journal of Theoretical & Applied Information Technology. 2015. Vol. 71. № 3.


Рецензия

Для цитирования:


Егоров А.Д. О важности оптимизации точности и производительности алгоритмов отслеживания объектов в видеопотоке по параметрам. Вестник НИЯУ МИФИ. 2019;8(4):350-360. https://doi.org/10.1134/S2304487X19030052

For citation:


Egorov A.D. Optimization of Parametric Object Video Stream Tracking Algorithms. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(4):350-360. (In Russ.) https://doi.org/10.1134/S2304487X19030052

Просмотров: 99


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)