NONLINEAR SCHRÖDINGER EQUATION OF GENERAL FORM: MULTIFUNCTIONAL MODEL, REDUCTIONS AND EXACT SOLUTIONS
https://doi.org/10.26583/vestnik.2025.1.3
EDN: DXKPEC
Abstract
A new mathematical model based on the nonlinear Schrödinger equation with six arbitrary functions and allowing for various factors is presented. This multifunctional model is a broad generalization of numerous simpler related nonlinear models that are commonly encountered in various areas of theoretical physics, including nonlinear optics, superconductivity, and plasma physics. To analyze the nonlinear equation under consideration, a combination of the method of functional constraints and methods of generalized separation of variables is used. One-dimensional non-symmetry reductions are described, which lead the studied complex partial differential equation to simpler ordinary differential equations or systems of such equations. A number of exact solutions of the nonlinear Schrödinger equation of general form have been found, which are expressed in quadratures or elementary functions. Both periodic solutions in time and in spatial variable are obtained. Special attention is paid to some narrower classes of nonlinear PDEs with a smaller number of arbitrary functions. The described general multifunctional model allows one to effectively analyze numerous simpler models by specifying a specific particular forms of arbitrary functions. The exact solutions obtained in this work can be used as test problems intended to check the adequacy and assess the accuracy of numerical and approximate analytical methods for integrating nonlinear equations of mathematical physics.
Keywords
About the Authors
A. D. PolyaninRussian Federation
N. A. Kudryashov
Russian Federation
References
1. Agrawal G.P. Nonlinear Fiber Optics, 4th ed. New York: Academic Press, 2007.
2. Kivshar Yu.S., Agrawal G.P. Optical Solitons: From Fibers to Photonic Crystals. San Diego: Academic Press, 2003.
3. Kodama Y., Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 1987. Vol. 23. No. 5. Pp. 510-524.
4. Drazin P.G., Johnson R.S. Solitons: An Introduction. Cambridge: Cambridge University Press, 1989.
5. Ablowitz M.J., Clarkson P.A. Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991.
6. Kivshar Yu.S., Malomed B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys., 1989. Vol. 63. Pp. 763–915.
7. Akhmanov S.A., Sukhorukov A.P., Khokhlov R.V. Self-focusing and diffraction of light in a nonliner medium. Soviet Physics Uspekhi, 1968. Vol. 10. No. 5. Pp. 609–636.
8. Hasegawa A., Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 1973. Vol. 23. No. 3. Pp. 142–144.
9. Hasegawa A., Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Applied Physics Letters, 1973. Vol. 23. No. 4. Pp. 171–172.
10. Tai K., Hasegawa A., Tomita A. Observation of modulational instability in optical fibers. Physical Review Letters, 1986. Vol. 56. No. 2. Pp. 135–138.
11. Weiss J., Tabor M., Carnevale G. The Painleve property for partial differential equations. J. Math. Phys., 1982. Vol. 24. No. 3. Pp. 522–526.
12. Kudryashov N.A. Painlevé analysis of the resonant third-order nonlinear Schrödinger equation. Appl. Math. Letters, 2024. Vol. 158. 109232.
13. Kudryashov N.A. Painlevé analysis of the Sasa–Satsuma equation. Phys. Letters A, 2024. Vol. 525. 129900.
14. Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed. Boca Raton: CRC Press, 2012.
15. Al Khawaja U., Al Sakkaf L. Handbook of Exact Solutions to the Nonlinear Schrödinger Equations. Bristol: Institute of Physics Publ., 2019.
16. Polyanin A.D. Handbook of Exact Solutions to Mathematical Equations. Boca Raton: CRC Press–Chapman & Hall, 2025.
17. Bullough R.K. Solitons, Physics Bulletin, 1978. Vol. 29. No. 2. Pp. 78–82.
18. Kudryashov N.A. A generalized model for description of propagation pulses in optical fiber. Optik, 2019. Vol. 189. Рр. 42- 52.
19. Kudryashov N.A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik, 2019. Vol. 194. 163060.
20. Kudryashov N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik, 2020. Vol. 212. 164750.
21. Kudryashov N.A. Solitary waves of the non-local Schrödinger equation with arbitrary refractive index. Optik, 2021. Vol. 231. 166443.
22. Kudryashov N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive insex. Applied Mathematics Letters, 2022. Vol. 128. 107888.
23. Kudryashov N.A. Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik, 2021. Vol. 230. 66347.
24. Yildirim Y. Optical solitons to Schrodinger-Hirota equation in DWDM system with modified simple equation integration architecture. Optik, 2019. Vol. 182. Pp. 694–701.
25. Zayed E.M.E., Shohib R.M.A., Biswas A., Ekici M., Alshomrani A.S., Khan S., Zhou Q., Belic M.R. Dispersive solitons in optical fibers and DWDM networks with Schrodinger–Hirota equation. Optik, 2019. Vol. 199. 163214.
26. Zayed E.M.E., Shohib R.M.A., Alngar M.E.M., Biswas A., Moraru L., Khan S., Yildirim Y., Alshehri H.M., Belic M.R. Dispersive optical solitons with Schrodinger-Hirota model having multiplicative white noise via Ito Calculus. Physics Letters A: General, Atomic and Solid State Physics, 2022. Vol. 445. 128268.
27. Wang G., Kara A.H., Biswas A., Guggilla P., Alzahrani A.K., Belic M.R. Highly dispersive optical solitons in polarization-preserving fibers with Kerr law nonlinearity by Lie symmetry. Physics Letters A: General, Atomic and Solid State Physics, 2022. Vol. 421. 127768.
28. Biswas A., Hubert M.B., Justin M., Betchewe G., Doka S.Y., Crepin K.T., Ekici M., Zhou Q., Moshokoa S., Belic M. Chirped dispersive bright and singular optical solitons with Schrodinger–Hirota equation. Optik, 2018. Vol. 168. Pp. 192–195.
29. Zhou Q., Xu M., Sun Y., Zhong Y., Mirzazadeh M. Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons. Nonlinear Dynamics, 2022. Vol. 110. No. 2. Pp. 1747–1752.
30. Polyanin A.D., Kudryashov N.A. Nelineynyye uravneniya Shredingera s zapazdyvaniyem: Tochnyye resheniya, reduktsii i preobrazovaniya [Nonlinear Schrödinger equations with delay: Exact solutions, reductions, and transformations]. Vestnik NIYaU MIFI, 2024. Vol. 13. No. 5. Pp. 340–349 (in Russian).
31. Polyanin A.D., Kudryashov N.A. Nelineynoye uravneniye Shredingera s dispersiyey i potentsialom obshchego vida: Tochnyye resheniya i reduktsii [Nonlinear Schrödinger equation with dispersion and potential of the general form: Exact solutions and reductions]. Vestnik NIYaU MIFI, 2024. Vol. 13. No. 6. Pp. 394- 402. (in Russian).
32. Polyanin A.D., Kudryashov N.A. Closed-form solutions of the nonlinear Schrödinger equation with arbitrary dispersion and potential. Chaos, Solitons & Fractals, 2025. Vol. 191. 115822.
33. Polyanin A.D., Kudryashov N.A. Nonlinear Schrödinger equations with delay: Closed-form and generalized separable solutions. Contemporary Mathematics, 2024. Vol. 5. No. 4. 5420245840.
34. Polyanin A.D., Zhurov A.I. Separation of Variables and Exact Solutions to Nonlinear PDEs. Boca Raton–London: CRC Press, 2022.
35. Michalska M., Klein M., Dlubek M. Dissipative soliton resonance in a normal dispersion all-polarization-maintaining thulium-doped fiber laser. Optics & Laser Technology, 2025. Vol. 181(B). 111895.
36. Saleem Q.M., Ebrahium M.M., Aly K.A., Saddeek Y.B. Optical properties of transition metals complex films derived from hydrazone oxime for optoelectronic devices. Journal of Molecular Structure, 2025. Vol. 1321. No. 5. 140196.
37. Choi M.-R., Hong Y., Lee Y.-R.. Global existence versus finite time blowup dichotomy for the dispersion managed NLS. Nonlinear Analysis, Theory, Methods and Applications, 2025. Vol. 251. 113696.
38. Pashaev O.K., Lee J.H. Black holes and solutions of the quantized dispersionless NLS and DNLS equations. ANZIAM J., 2002. Vol. 44. No. 1. Pp. 73–81.
39. Lee J.-H., Pashaev O.K., Rogers C., Schief W.K. The resonant nonlinear Schrodinger equation in cold plasma physics. Application of Backlund–Darboux transformations and superposition principles. Journal of Plasma Physics, 2007. Vol. 73. No. 2. Pp. 257–272.
40. Lee J.-H., Pashaev O.K. Solitons of the resonant nonlinear Schrodinger equation with nontrivial boundary conditions: Hirota bilinear method. Theoretical and Mathematical Physics, 2007. Vol. 152. No. 1. Pp. 991–1003.
41. Tala-Tebue E., Seadawy A.R. Construction of dispersive optical solutions of the resonant nonlinear Schrodinger equation using two different methods. Modern Physics Letters B, 2018. Vol. 32. No. 33. 1850407.
42. Zhou Q., Wei C., Zhang H., Lu J., Yu H., Yao P., Zhu Q. Exact solutions to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions. Proc. Romanian Academy, Ser. A, 2016. Vol. 17. No. 4. Pp. 307–313.
43. Eldidamony H.A., Arnous A.H., Nofal T.A., Yildirim Y. Optical soliton solutions in birefringent fibers with multiplicative white noise: an analysis for the perturbed Chen–Lee–Liu model. Nonlinear Dynamics, 2024. Vol. 112. No. 24. Pp. 22295–22322.
44. Eslami M., Sharif A. Extended hyperbolic method to the perturbed nonlinear Chen-Lee-Liu equation with conformable derivative. Partial Differential Equations in Applied Mathematics, 2024. Vol. 11. 100838.
45. Lu W., Ahmad J., Akram S., Aldwoah K.A. Soliton solutions and sensitive analysis to nonlinear wave model arising in optics. Physica Scripta, 2024. Vol. 99. No. 8. 085230.
46. Althrwi F.A., Alshaery A.A., Bakodah H.O., Nuruddeen R.I. Supplementary optical solitonic expressions for Gerdjikov-Ivanov equations with three Kudryashov-based methods. Communications in Theoretical Physics, 2024. Vol. 76. No. 12. 125001.
47. Calogero F., Degasperis A. Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. Amsterdam: North Holland Publ., 1982.
48. Polyanin A.D., Nazaikinskii V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed. Boca Raton–London: CRC Press, 2016.
49. Polyanin A.D., Zhurov A.I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simul., 2014. Vol. 19. No. 3. Pp. 417–430.
50. Polyanin A.D., Zhurov A.I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients. Int. J. Non-Linear Mech., 2014. Vol. 67. Pp. 267–277.
51. Polyanin A.D., Sorokin V.G., Zhurov A.I. Delay Ordinary and Partial Differential Equations. Boca Raton–London: CRC Press, 2024.
52. Aksenov A.V., Polyanin A.D. Methods for constructing complex solutions of nonlinear PDEs using simpler solutions. Mathematics, 2021. Vol. 9. No. 4. 345.
53. Polyanin A.D., Zaitsev V.F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Boca Raton–London: CRC Press, 2018.
Review
For citations:
Polyanin A.D., Kudryashov N.A. NONLINEAR SCHRÖDINGER EQUATION OF GENERAL FORM: MULTIFUNCTIONAL MODEL, REDUCTIONS AND EXACT SOLUTIONS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(1):24-36. (In Russ.) https://doi.org/10.26583/vestnik.2025.1.3. EDN: DXKPEC