Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

THE CREDIT ORGANIZATIONS FINANCIAL STATE FORECASTING BASED ON SINGULAR-SPECTRAL ANALYSIS

https://doi.org/10.26583/vestnik.2025.1.5

EDN: RKSSFZ

Abstract

Singular spectrum analysis is successfully applied in many practical problems of mathematical modeling, including economic ones. The purpose of this work is to develop a new mathematical approach for forecasting the values ​​of key performance indicators of credit institutions (“Profit”, “Accounts with the Bank of Russia”, “Securities”), presented as time series with an observation step of one month. The analysis and forecasting of key indicators was carried out using singular spectrum analysis by the “Caterpillar”-SSA method in the CaterpillarSSA program. The relevance of the study is due to the need to implement new efficient computing technologies for the early warning systems of the Bank of Russia and Rosfinmonitoring. The article presents the implementation of the “Caterpillar”-SSA method for assessing the financial condition of two types of credit institutions: a bank with a revoked license (JSC Bank “CCB”) and a reliable bank (JSC “TBank”). The authors managed to implement the decomposition of time series of key indicators into a trend, harmonic and noise components. Based on the principal components responsible for the trend and periodicity, the reconstruction and forecasting of the considered time series for 6 months ahead were performed with high accuracy

About the Authors

V. V. Ivanov
Joint Institute for Nuclear Research; National Research Nuclear University “MEPhI”
Russian Federation


A. V. Kryanev
National Research Nuclear University “MEPhI”; Joint Institute for Nuclear Research
Russian Federation


A. S. Prikazchikova
National Research Nuclear University “MEPhI”
Russian Federation


E. P. Akishina
Joint Institute for Nuclear Research
Russian Federation


References

1. Vokhmyanin S. V., Senashov S. I. Metod «Gusenica»-SSA kak instrument prognozirovaniya sostoyaniya finansovogo rynka .[The Caterpillar-SSA method as a tool for forecasting the state of the financial market ]. Aktual'nye problemy aviacii i kosmonavtiki, 2010 Vol. 1, No. 6. Pp. 409 – 410.

2. Zinenko A. V. Prognozirovanie finansovyh vremennyh ryadov s ispol'zovaniem singulyarnogo spektral'nogo analiza [Forecasting financial time series using singular spectrum analysis]. Biznes-informatika, 2023. Vol. 17. No. 3. Pp. 87–100. DOI: 10.17323/2587-814X.2023.3.87.100.

3. Savin A. S., Khokhlov A. A., Chetov A. I. Analiz vremennyh ryadov v prilozhenii k izucheniyu povedeniya pokupatelej . [Time Series Analysis in Application to the Study of Consumer Behavior]. Internet-zhurnal «Naukovedenie» [Internet Journal “Science Studies”], 2015. Vol. 7, No.3. http://naukovedenie.ru /PDF/41TVN315.pdf (free access). DOI: 10.15862/41TVN315.

4. Akishina E.P., Ivanov V.V., Kryanev A.V., Prikazchikova A.S. Mnogomernyj analiz dannyh v zadache prognozirovaniya popadaniya kreditnyh organizacij v zonu riska .[Multivariate data analysis in the problem of predicting whether credit institutions will fall into the risk zone]. Vestnik NIYaU MIFI, 2024, Vol. 13. No.1. Pp. 22-29. https://doi.org/10.26583/vestnik.2024.302. EDN: HUDHFW.

5. Akishina E.P., Ivanov V.V., Kryanev A.V., Prikazchikova A.S. Razrabotka matematicheskih modelej klassifikacii kreditnyh organizacij s ispol'zovaniem derev'ev reshenij i ih ansamblej [Development of mathematical models for the classification of credit institutions using decision trees and their ensembles]. Vestnik NIYaU MIFI, 2024, Vol. 13. No.4, Pp. 242-250. https://doi.org/10.26583/vestnik.2024.350. EDN: LGWWEH.

6. Golyandina N. E. Metod «Gusenica»-SSA: analiz vremennyh ryadov [The Caterpillar-SSA Method: Time Series Analysis]. Sankt –Peterburg, Izdatel'skij Centr «Akademiya» Publ., 2004, 52 p.

7. Glavnye komponenty vremennyh ryadov: metod Gusenica /Pod red. D.L. Danilova i A.A. Zhiglyavskogo [ Principal Components of time series: The Caterpillar Method / Ed. by D. L. Danilov and A. A. Zhiglyavsky]. ]. Sankt –Peterburg, SPbGU Publ., 1997. 307 p.

8. GistaT Group. CaterpillarSSA, version 3.40. Professional M Edition. Available at: http://www.gistatgroup.com/cat/. (accessed 10.12.2024)

9. Gibbons J. D., Chakraborti S. Nonparametric statistical inference, 4th Edition. CRC Press, 2003, 682 p. ISBN 978-0-8247-4052-8.

10. Turuntseva, M. Y. Ocenka kachestva prognozov: prostejshie metody [Assessment of Forecast Quality: the Simplest Methods]. Rossijskoe predprinimatel'stvo, 2011. Vol. 12, no.8(1).Pp. 50-56.


Review

For citations:


Ivanov V.V., Kryanev A.V., Prikazchikova A.S., Akishina E.P. THE CREDIT ORGANIZATIONS FINANCIAL STATE FORECASTING BASED ON SINGULAR-SPECTRAL ANALYSIS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(1):50-63. (In Russ.) https://doi.org/10.26583/vestnik.2025.1.5. EDN: RKSSFZ

Views: 73


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)