Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

EXACT SOLUTIONS OF GENERALIZED NONLINEAR VAKHNENKO-PARKES EQUATION

https://doi.org/10.26583/vestnik.2025.3.4

EDN: NFYDTS

Abstract

In this paper, one of generalized Vakhnenko-Parkes’ family equations is considered describing the propagation of short-wave disturbances in relaxing media, taking into account the dependence of the wave velocity on the amplitude. A general quadrature solution is obtained for the equation under consideration by reducing it to an ordinary differential equation using traveling wave variables. Some formal exact solutions of the initial equation are found. Periodic exact solutions are expressed in terms of Jacobi elliptic functions. An explicit solution is also presented, expressed in terms of a power function of spatial and temporal variables. The obtained exact solutions can be used as test functions when analyzing the results of numerical simulation of processes in relaxing medium described by Vakhnenko-Parkes type equations.

About the Authors

K. M. Zuev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Vakhnenko V.O. Solitons in a nonlinear model medium. Journal of Physics A: Mathematical and General, 1992. vol. 25. no.15. рр.4181-4187. DOI: 10.1088/0305-4470/25/15/025.

2. Vaknenko V.O., Parkes E. The two loop soliton solution of the Vakhnenko equation. Nonlinearity, 1998. vol. 11. pp. 1457-1464. DOI: 10.1088/09517715/11/6/001.

3. Roshid H., Kabir M., Bhowmik R., Datta B.K. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(−(ξ)) expansion method. SpringerPlus, 2014. vol.3, article number 692. DOI: 10.1186/21931801-3-692.

4. Baskonus H.M., Bulut H., Emir D.G. Regarding new complex analytical solutions for the nonlinear partial Vakhnenko- Parkes differential equation via Bernoulli sub-equation function method./ Mathematics Letters, 2015. vol.1, no. 1. pp. 1-9. DOI: 10.11648/j.ml.20150101.11.

5. Vakhnenko V.O., Parkes E.J. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation / in book: Top 5 Contributions in Applied Mathematics: 2nd Edition, 2019. DOI: 10.29290/T5CAMATH2.2.1.2019.2-41.

6. Hoque M., Rahman M.A. Multisoliton solutions, completely elastic collisions and non-elastic fusion phenomena of two PDEs. Pramana-Journal of Physics, 2017. vol.88:86. pр.9. DOI: 10.1007/s12043-017-1390-3.

7. Gu Yongyi, Yuan W., Aminаkbari N., Jiang Q. Exact Solutions of the Vakhnenko-Parkes Equation with Complex Method. Journal of Function Spaces, 2017. vol. 2017. pp. 1-6. DOI: 10.1155/2017/6521357.

8. Yel Gu¨lnur, Akturk Tolga.Application of the modified exponential function method to Vakhnenko-Parkes equation. Mathematics in Natural Science, 2020. vol.6. pp. 8-14. DOI: 10.22436/mns.06.01.02.

9. Attia Raghda A.M, Elagan S.K., Alharthi Meteub, Khater M.. New types of exact solutions of high-frequency waves model in the relaxation medium. Thermal Science, 2021. vol.25, pp. 233-238. DOI: 10.2298/TSCI21S2233A.

10. Pankaj R. D. A novel narration for propagation of wave in relaxing medium by expansion scheme. Advances and Applications in Mathematical Sciences, 2021. vol.20. pp. 1517-1521.

11. Khater M. MA, Shabbir Muhammad, Al-Ghamdi A., Higazy M. Novel soliton wave solutions of the Vakhnenko–Parkes equation arising in the relaxation medium. Journal of Ocean Engineering and Science, 2022. DOI: 10.1016/j.joes.2022.02.015.

12. Hussain A., Kara A.H., Zaman F.D. An invariance analysis of the Vakhnenko–Parkes Equation. Chaos, Solitons & Fractals, 2023. vol.171, pр. 113423. DOI: 10.1016/j.chaos.2023.113423

13. Fan Z-Y. New soliton solutions for the local fractional Vakhnenko-Parkes equation. Thermal Science, 2023. vol. 27. iss.5. рр. 3877-3882 DOI: 10.2298/TSCI2305877F

14. Seadawy A., Albarakati W., Ali A., Baleanu D. Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods. Applied Mathematics-A Journal of Chinese Universities, 2022. vol.37. pp. 21-34. DOI: 10.1007/s11766-022-4056-y.

15. Yeşim Sağlam Özkan, Seadawy Aly R., Yaşar Emrullah. Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko–Parkes equation arising at propagation of high-frequency waves in a relaxing medium. Journal of Taibah University for Science, 2021. vol.15. № 1. pp. 666–678. DOI: 10.1080/16583655.2021.1999053.

16. Meng Q., He B. New Interaction Solutions for a (2+1) Dimensional Vakhnenko Equation. Complexity, 2020. pp.1-9. DOI: 10.1155/2020/5620245.

17. Adeyemo O. D., Khalique Ch. M.. Novel exact solutions and conserved vectors of the first extended modified (3+1)-dimensional integrable Vakhnenko-Parkes equation. Discrete and Continuous Dynamical Systems - S, 2024. vol. 18, iss.4 . DOI:10.3934/dcdss.2024196

18. Kumar S., Mann N.. Abundant closed-form solutions of the (3+1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering. Journal of Ocean Engineering and Science, 2022. DOI: 10.1016/j.joes.2022.04.007.

19. Wazwaz A.M. The integrable Vakhnenko–Parkes (VP) and the modified Vakhnenko–Parkes (MVP) equations: Multiple real and complex soliton solutions. Chinese Journal of Physics, 2019. vol. 57. pp. 375-381. DOI: 10.1016/j.cjph.2018.11.004.

20. Sakovich S. On a Modified Vakhnenko-Parkes Equation. Nonlinear Phenomena in Complex Systems, 2019. vol. 22(2). pp. 205-207.

21. Majid F., Houria T., Hayat T., Aldossary O., Biswas A. Solitary wave solutions of the Vakhnenko-Parkes equation. Nonlinear Analysis: Modelling and Control, 2012. vol.17. pp. 60-65. DOI: 10.15388/NA.17.1.14078.

22. Kumar S. Painlev´e analysis and invariant solutions of Vakhnenko–Parkes (VP) equation with power law nonlinearity. Nonlinear Dynamics, 2016. vol. 85. doi.org/10.1007/s11071-016-2759-4.

23. Jyoti D., Kumar S. Modified Vakhnenko–Parkes equation with power law nonlinearity: Painlev´e analysis, analytic solutions and conservation laws. The European Physical Journal Plus, 2020. vol. 135. pp. 762. DOI: 10.1140/epjp/s13360-020-00785-y.

24. Fan F., Chen X. Dynamical behavior of traveling waves in a generalized VP-mVP equation with non-homogeneous power law nonlinearity. AIMS Mathematics, 2023. vol. 8. no. 8. pp. 17514-17538. DOI: 10.3934/math.2023895.

25. Kudryashov N.A. Algoritm postroeniya pervykh integralov odnogo klassa nelineinykh differentsial’nykh uravneniy vtorogo poryadka [Algorithm for Constructing the First Integrals for One Class of Nonlinear Differential Equations of the Second Order]. Vestnik NIYaU MIFI, 2022. vol.11. no. 2. pp. 109–116. DOI: 10.56304/S2304487X22020080.


Review

For citations:


Zuev K.M., Kudryashov N.A. EXACT SOLUTIONS OF GENERALIZED NONLINEAR VAKHNENKO-PARKES EQUATION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(3):214-224. (In Russ.) https://doi.org/10.26583/vestnik.2025.3.4. EDN: NFYDTS

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)