Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

APPROXIMATE SOLUTION OF A PARAMETRIC EQUATION OF THE FIFTH DEGREE

https://doi.org/10.26583/vestnik.2025.2.5

EDN: HZAFNF

Abstract

The problem of finding the roots of high-degree polynomials is complex and generally unsolvable. However, in a number of special cases, the roots can be found. The article proposes an original approach to finding the roots of a partial fifth-degree polynomial containing a parameter as a free term. An attempt to find the roots of a parametric fifth-degree polynomial by representing this polynomial as a product of third- and second-degree polynomials, with the subsequent compilation of a system of equations for finding the coefficients of third- and second-degree polynomials, leads to very cumbersome equations, the complexity of solving which is very high. Therefore, an approach is proposed, the idea of which is that the roots are first found for fixed values of the parameter. Then, by setting a small increment to the parameter value, an analysis is carried out for changes in the values of the roots of the polynomial. This becomes possible due to the fact that the parameter is a free term of the polynomial and its increment leads to a shift in the polynomial graph along the vertical axis. This approach allows finding approximate values of roots without using iterative numerical methods.

About the Author

K. Ya. Kudryavtsev
National Research Nuclear University "MEPhI"
Russian Federation


References

1. Klein F. Lekcii ob ikosaedre i reshenii uravnenij pyatoj stepeni / Per. s nem., pod. red. A.N. Tyurina [Lectures on the icosahedron and the solution of equations of the fifth degree / trans-lated from German, edited by A.N. Tyurin]. Moscow, Nauka Publ., 1989. 336 p.

2. Mikhalkin E.N. O reshenii uravneniya pyatoj stepeni [On the solution of the equation of the fifth degree]. Izvestiya vuzov. Matematika, 2009. No. 6. Pp. 20 – 30 (in Russian).

3. Rostovtsev N.A. Ob iteracionnom reshenii uravnenij nechetnyj stepenej s polozhitel’nymi koefficientami [On the iterative solution of equations of odd degrees with positive coeffi-cients]. UMN, 1952. Vol. 7. Iss. 3 (49). Pp. 135 – 138 (in Russian).

4. Nesmeev Yu.A. Reshenie uravneniya pyatoj stepeni razlozheniem levoj chasti na pro-izvedenie mnogochlenov vtoroj i tret’ej stepeni [Solution of the equation of the fifth degree by decomposing the left-hand side into a product of polynomials of the second and third de-grees]. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2017. Iss. 1 (36). Pp. 21 – 28 (in Russian).

5. Gusak A.A., Gusak G.M., Brichikova E.A. Spravochnik po vysshej matematike [Handbook of Higher Mathematics]. Minsk, Tetrasystems Publ., 1999. 640 p. (in Russian).

6. Korn G., Korn T. Spravochnik po matematike (dlya nauchnyh rabotnikov i inzhenerov) [Handbook of Mathematics (for scientists and engineers)]. Moscow, Nauka Publ., 1973. 720 p. (in Russian).

7. Lebedev V.I. Funkcional’nyj analiz i vychislitel’naya matematika [Functional analysis and computational mathematics]. Moscow, FIZMATLIT Publ., 2005. 296 p. (in Russian).

8. Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Chislennye metody [Numerical methods]. Moscow, BINOM. Laboratoriya znanij Publ., 2008. 636 p. (in Russian).

9. Kudryavtsev K.Ya., Prudnikov A.M. Metody optimizacii [Optimization methods]. Moscow, NIYAU MIFI Publ., 2015, 140 p. (in Russian).

10. Shmoilov V.I., Kirichenko G.A. Reshenie algebraicheskih uravnenij nepreryvnymi droby-ami Nikiporca [Solution of algebraic equations by Nikiports continued fractions]. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 2014. Vol. 14. Iss. 4. Part 1. Pp. 428 – 439. DOI: 10.18500/1816-9791-2014-14-4-428-439 (in Rus-sian).

11. Abyzov A.N. Metod Fan’yano resheniya algebraicheskih uravnenij: istoricheskij obzor i ego razvitie [Fagnano method for solving algebraic equations: historical review and its develop-ment]. Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki, 2021. Vol. 163. Book 3. Pp. 304 – 348. DOI: 10.26907/2541-7746.2021.3-4.304-348 (in Russian).


Review

For citations:


Kudryavtsev K.Ya. APPROXIMATE SOLUTION OF A PARAMETRIC EQUATION OF THE FIFTH DEGREE. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(2):141-148. (In Russ.) https://doi.org/10.26583/vestnik.2025.2.5. EDN: HZAFNF

Views: 46


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)