Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Exact linearization of fully nonlinear Monge – Ampère type equations

https://doi.org/10.26583/vestnik.2025.6.5

EDN: KREEFH

Abstract

New classes of Monge – Ampère equations of a fairly general form are described, depending on one to six arbitrary functions of one or two arguments that allow exact linearization in closed form. For linearization, contact Euler and Legendre transformations and special point transformations (including the nonclassical hodograph transformation) of their combinations are used. Special attention is given to the Monge – Ampère equations encountered in meteorology and geophysics. Equivalence transformations of classes of Monge – Ampère equations of a special kind are also considered. For some nonlinear equations, exact solutions were obtained depending on arbitrary functions. Two nonstationary, strongly nonlinear Monge-Ampère type equations with three independent variables, encountered in electron magnetohydrodynamics and geophysical fluid dynamics, were also considered. For these equations, two-dimensional reductions to simpler equations that allow exact linearization were constructed in traveling-wave variables.

About the Authors

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation


A. V. Aksenov
Lomonosov Moscow State University
Russian Federation


References

1. Pogorelov A.V. Vneshnyaya geometriya vypuklyh poverhnostej [Extrinsic Geometry of Convex Surfaces]. Moscow, Nauka Publ., 1969. 759 p.

2. Courant R. Uravneniya s chastnymi proizvodnymi [Partial differential equations]. Moscow, Мir Publ., 1964. 830 p.

3. Caffarelli L.A., Milman M.(eds). Monge – Ampère Equation: Applications to Geometry and Optimization. Providence, American Mathematical Society, 1999.

4. Figalli A. The Monge – Ampère Equation and Its Applications. Zürich, European Mathematical Society, 2017. 212 p.

5. Martin M.N. The propagation of a plane shock into a quiet atmosphere. Canadian Journal of Mathematics, 1953. Vol. 5. Pp. 37-39. DOI: 10.4153/CJM-1953-004-2

6. Rozhdestvenskii B.L., Yanenko N.N. Sistemy kvazilinejnyh uravnenij i ih prilozheniya k gazovoj dinamike, izd. 2-e. [Systems of Quasilinear Equations and Their Applications to Gas Dynamics]. Mos-cow, Nauka Publ., 1978. 687 p.

7. Hill J.M., Arrigo D.J. New families of exact solutions for finitely deformed incompressible elastic materials. IMA Journal of Applied Mathematics ,1995. Vol.54(2). Pp. 109–123.

8. DOI:10.1093/imamat/54.2.109

9. Hill J.M., Arrigo D.J. Transformations and equation reductions in finite elasticity I: Plane strain deformations . Mathematics and Mechanics of Solids, 1996. Vol. 1. Iss.2. Pp. 155–175.

10. Zaburdaev V.Yu., Smirnov V.V., Chukbar K.V. Nonlinear dynamics of electron vortex lattices. Plasma Phys. Reports, 2014. Vol. 30. No. 3. Pp. 214–217.

11. Zhabborov N.M., Korobov P.V., Imomnazarov Kh.Kh. Primeneniye differentsial’nykh tozhdestv Megrabova k uravneniyam dvukhskorostnoy gidrodinamiki s odnim davleniyem [Application of Megrabov’s differential identities to the two-velocity hydrodynamics equations with one pressure]. Journal of Siberian Federal University. Mathematics & Physics, 2012. Vol. 5. No. 2. Pp. 156–163. (in Russian)

12. Rozendorn E.R. Nekotoryye klassy chastnykh resheniy uravneniya i ikh prilozheniye k zadacham meteorologii [Some classes of particular solutions of the equation and their application to meteorological problems]. Vestn. Mosk. Univ. Ser. 1. Mat., Mech., 1984. No. 2. Pp. 56–58. (in Russian)

13. Rozendorn E.R. Poverkhnosti otritsatel’noy krivizny [Surfaces of negative curvature]. Results of science and technology. Series: Modern problems of mathematics. Fundamental directions, 1989. Vol. 48. Pp. 98–195.

14. Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed. Boca Raton: CRC Press, 2012.

15. Goursa E. Kurs matematicheskogo analiza [Course of Mathematical Analysis. Vol. 3, Part 1]. Moscow, Gostekhizdat Publ.: Russia, 1933. 1764 p.

16. Ovsiannikov L.V. Gruppovoj analiz differencial'nyh uravnenij [Group Analysis of Differential Equations]. Moscow, Nauka Publ., 1978. 399 p.

17. Khabirov S.V. Neizentropicheskiye odnomernyye dvizheniya gaza, postroyennyye s pomoshch’yu kontaktnoy gruppy neodnorodnogo uravneniya Monzha – Ampera [Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogeneous Monge – Ampère equation]. Math. Sbornik, 1990. Vol. 181. No. 12. Pp. 1607–1622 (in Russian).

18. Fushchich W.I., Shtelen W.M, Serov N.I. Simmetrijnyj analiz i tochnye resheniya nelinejnyh uravnenij matematicheskoj fiziki. [Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics]. Kiev, Naukova dumka Publ., 1989.

19. Ibragimov N.H. (ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws. Boca Raton: CRC Press, 1994.

20. Polyanin A.D. Handbook of Exact Solutions to Mathematical Equations. Boca Raton: CRC Press, 2025.

21. Gutshabash E.S. Legendre transformation in the Born–Infeld model, Monge – Ampère equation and exact solutions. Journal of Mathematical Sciences, 2024. Vol. 284. Pp. 673–680. DOI:10.1007/s10958-024-07378-5

22. Feroze T., Umair M. Optimal system and exact solutions of Monge – Ampère equation. Commu-nications in Mathematics and Applications , 2021. Vol. 12. № 4. Pp. 825–833. DOI: 10.26713/cma.v12i4.1516

23. Aminov Yu., Arslan K., Bayram B., Bulca B., Murathan C., Öztürk G. On the solution of the Monge – Ampère equation with quadratic right side. Zh. Mat. Fiz. Anal. Geom., 2011. Vol. 7. No. 3. Pp. 203–211.

24. Aminov Yu.A. O polinominal’nykh resheniyakh uravneniya Monzha–Ampera [On polynomial solutions of the Monge – Ampère equation]. Math. Sbornik, 2014. Vol. 205. No. 11. Pp. 3–38 (in Russian). DOI:10.4213/sm8356

25. Arrigo D.J., Hill J.M. On a class of linearizable Monge – Ampère equations. J. Nonlinear Math. Phys., 1998. Vol. 5. No. 2. Pp. 115–119. DOI: 10.2991/jnmp.1998.5.2.1

26. Bakelman I.Ya., Krasnosel’skii M.A. Netrivial’nyye resheniya zadachi Dirikhle dlya uravneniy s operatorami Monzha–Ampera [Nontrivial solutions of the Dirichlet problem for equations with Monge – Ampère operators]. DAN SSSR, 1961. Vol. 137. No. 5. Pp. 1007–1010 (in Russian).

27. Fushchich W.I., Serov N.I. Simmetriya i nekotoryye tochnyye resheniya mnogomernogo uravneniya Monzha – Ampera [Symmetry and some exact solutions of the multidimensional Monge – Ampère]. Dokl. Acad. Nauk USSR. 1983. Vol. 273. Pp. 543–546 (in Russian).

28. Leibov O.S. Reduction and exact solutions of the Monge – Ampère equation. Journal of Nonlin-ear Mathematical Physics, 1997. Vol. 4. No. 1–2. Pp. 146–148. DOI:10.2991/jnmp.1997.4.1-2.17

29. Fedorchuk V.M., Fedorchuk V.I. On the symmetry reduction of the (1+3)-dimensional inhomogeneous Monge – Ampère equation to algebraic equations. Journal of Mathematical Sciences, 2024. Vol. 282 (5). Pp. 1-10. DOI:10.1007/s10958-024-07208-8

30. Rakhmelevich I.V. Mnogomernoye uravneniye Monzha – Ampera so stepennymi nelineynostyami po pervym proizvodnym [Multidimensional Monge – Ampere equation with power nonlinearities in the first derivatives]. Vestn. Voronezh State University. Series: Physics. Mathematics, 2020. No. 2. Pp. 86–98 (in Russian).

31. Kosov A.A., Semenov E.I. On exact solutions to multidimensional generalized Monge – Ampère equation. Differential Equations, 2024. Vol. 60. No. 10. Pp. 1404–1418.

32. Kosov A.A., Semenov E.I. Obobshchennoye uravneniye tipa Monzha – Ampera i yego mnogomernyye tochnyye resheniya [Generalized equation of Monge – Ampère type and its multidimensional exact solutions]. Vestn. Udmurt. Univ. Mat. Mech. Comput. Sciences, 2025. Vol. 35. No. 2. Pp. 215–230 (in Russian).

33. Dubinov A.E., Kitayev I.N. New exact solutions of the equation of non-linear dynamics of a lattice of electronic vortices in plasma in the framework of electron magnetohydrodynamics. Magnetohydrodynamics, 2020. Vol. 56. No. 4. Pp. 369–375.

34. Rakhmelevich I.V. Nonautonomous evolution equation of Monge – Ampère type with two space variables. Russian Mathematics, 2023. Vol. 67. No. 2. Pp. 52–64.

35. Aksenov A.V., Polyanin A.D. Group analysis, reductions, and exact solutions of the Monge – Ampère equation in magnetic hydrodynamics. Differential Equations, 2024. Vol. 60. No. 6. Pp. 716–728.

36. Polyanin A.D., Aksenov A.V. Unsteady magnetohydrodynamics PDE of Monge – Ampère type: Symmetries, closed-form solutions, and reductions. Mathematics, 2024. Vol. 12. No. 13. 2127.

37. Polyanin A.D. Tochnyye resheniya i reduktsii nestatsionarnykh uravneniy matematicheskoy fiziki tipa Monzha – Ampera [Exact solutions and reductions of non-stationary equations of mathematical physics of the Monge – Ampère type]. Vestnik NIYaU MIFI, 2023. Vol. 12. No. 5. Pp. 276–288 (in Russian).

38. Galaktionov V.A., Svirshchevskii S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Boca Raton, Chapman & Hall/CRC Press, 2007.

39. Aksenov A.V., Polyanin A.D. Symmetries, reductions and exact solutions of nonstationary Monge – Ampère type equations. Mathematics, 2025. Vol. 13. No. 3. 525. DOI:10.3390/math13030525

40. Zwillinger D. Handbook of Differential Equations, 3rd ed. San Diego, Academic Press, 1998.

41. Polyanin A.D. Exact Methods for Nonlinear PDEs. Boca Raton–London: Chapman and Hall/CRC Press, 2025.

42. Clarkson P.A., Fokas A.S., Ablowitz M.J. Hodograph transformations of linearizable partial differential equations. SIAM J. Appl. Math., 1989. Vol. 49. No. 4. Pp. 1188–1209.

43. Polyanin A.D., Zaitsev V.F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Boca Raton, CRC Press, 2018.

44. Polyanin A.D., Aksenov A.V. Geophysical Monge-Ampère-type equation: Symmetries and exact solutions. Mathematics, 2025. Vol. 13. No 21. 3522.


Review

For citations:


Polyanin A.D., Aksenov A.V. Exact linearization of fully nonlinear Monge – Ampère type equations. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(6):500-515. (In Russ.) https://doi.org/10.26583/vestnik.2025.6.5. EDN: KREEFH

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)