Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Method of Functional Separation of Variables Can Give More Exact Solutions than Methods Based on a Single Differential Constraint

https://doi.org/10.1134/S2304487X19050067

Abstract

   It is shown that the direct method of functional separation of variables can sometimes provide a larger number of exact solutions of nonlinear partial differential equations than the method of differential constraints (with a single constraint) and the nonclassical method of symmetry reduction (based on the invariant surface condition). This fact is illustrated on nonlinear reaction–diffusion and convection–diffusion equations with variable coefficients, nonlinear Klein–Gordon type equations, and hydrodynamic boundary layer equations. Some new exact solutions are given.

About the Author

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Bauman Moscow State Technical University
Russian Federation

119526

115409

105005

Moscow



References

1. Polyanin A. D., Nelineynyye reaktsionno-diffuzionnyye uravneniya s peremennymi koeffitsiyentami: Metod poiska tochnykh resheniy v neyavnoy forme [Nonlinear reaction-diffusion equations with variable coefficients: Method for finding exact solutions in implicit form] Vestnik NIYaU MIFI, 2019, vol. 8, no. 4, pp. 321–334.

2. Polyanin A. D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction-diffusion equations with variable coefficients // Int. J. Non-Linear Mech. 2019. V. 111. P. 95–105.

3. Birkhoff G., Hydrodynamics, Princeton: Princeton University Press, 1960.

4. Pucci E., Saccomandi G. Evolution equations, invariant surface conditions and functional separation of variables // Physica D. 2000. V. 139. P. 28–47.

5. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd ed. Boca Raton: CRC Press, 2012.

6. Yanenko N. N., Teoriya sovmestnosti i metody integrirovaniya sistem nelineynykh uravneniy v chastnykh proizvodnykh [The compatibility theory and methods of integration of systems of nonlinear partial differential equations], Proc. All-Union Math. Congress, Leningrad: Nauka, 1964, vol. 2, pp. 247–252 (in Russian).

7. Meleshko S. V. Differential constraints and one-parameter Lie–Bäcklund groups // Sov. Math. Dokl. 1983. V. 28. P. 37–41.

8. Galaktionov V. A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions // Nonlinear Anal. Theor. Meth. Appl. 1994. V. 23. P. 1595–621.

9. Olver P. J. Direct reduction and differential constraints // Proc. Roy. Soc. London, Ser. A. 1994. V. 444. P. 509–523.

10. Kaptsov O. V. Determining equations and differential constraints // Nonlinear Math. Phys. 1995. V. 2. № 3–4. P. 283–291.

11. Sidorov A. F., Shapeev V. P., Yanenko N. N., Method of Differential Constraints and its Applications in Gas Dynamics, Novosibirsk: Nauka, 1984 (in Russian).

12. Andreev V. K., Kaptsov O. V., Pukhnachov V. V., Rodionov A. A. Applications of Group-Theoretical Methods in Hydrodynamics. Dordrecht: Kluwer, 1998.

13. Kaptsov O. V., Verevkin I. V. Differential constraints and exact solutions of nonlinear diffusion equations // J. Phys. A: Math. Gen. 2003. V. 36. P. 1401–1414.

14. Bluman G. W., Cole J. D. The general similarity solution of the heat equation // J. Math. Mech. 1969. V. 18. P. 1025–1042.

15. Levi D., Winternitz P. Nonclassical symmetry reduction: Example of the Boussinesq equation // J. Phys. A. 1989. V. 22. P. 2915–2924.

16. Nucci M. C., Clarkson P. A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation // Phys. Lett. A. 1992. V. 164. P. 49–56.

17. Clarkson P. A. Nonclassical symmetry reductions for the Boussinesq equation // Chaos, Solitons & Fractals. 1995. V. 5. P. 2261–2301.

18. Olver P. J., Vorob’ev E. M. Nonclassical and conditional symmetries. In: CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 3 (ed. N. H. Ibragimov). Boca Raton: CRC Press, 1996, P. 291–328.

19. Clarkson P. A., Ludlow D. K., Priestley T. J. The classical, direct and nonclassical methods for symmetry reductions of nonlinear partial differential equations // Methods Appl. Anal. 1997. V. 4. № 2. P. 173–195.

20. Saccomandi G. A personal overview on the reduction methods for partial differential equations // Note di Matematica. 2004 / 2005. V. 23. № 2. P. 217–248.

21. Ovsiannikov L. V., Group Analysis of Differential Equations, Boston: Academic Press, 1982.

22. Ibragimov N. H. (ed.), CRC Handbook of Lie Group Analysis of Differential Equations. Symmetries, Exact solutions and Conservation Laws, vol. 1. Boca Raton: CRC Press, 1994.

23. Kudryashov N. A., Metody nelineynoy matematicheskoy fiziki [Methods of Nonlinear Mathematical Physics], Dolgoprudnyi: Izd. Dom Intellekt, 2010 (in Russian).

24. Schlichting H. Boundary Layer Theory. New York: McGraw-Hill, 1981.

25. Polyanin A. D., Zhurov A. I. Unsteady axisymmetric boundary-layer equations: Transformations, properties, exact solutions, order reduction and solution method // Int. J. Non-Linear Mech. 2015. V. 74. P. 40–50.

26. Polyanin A. D., Zhurov A. I. Direct functional separation of variables and new exact solutions to axisymmetric unsteady boundary-layer equations // Commun. Non-linear Sci. Numer. Simulat. 2016. V. 31. P. 11–20.

27. Polyanin A. D., Zhurov A. I. One-dimensional reductions and functional separable solutions to unsteady plane and axisymmetric boundary-layer equations for non-Newtonian fluids // Int. J. Non-Linear Mech. 2016. V. 85. P. 70–80.

28. Clarkson P. A., Kruskal M. D. New similarity reductions of the Boussinesq equation // J. Math. Phys. 1989. V. 30. P. 2201–2213.

29. Ludlow D. K., Clarkson P. A., Bassom A. P. New similarity solutions of the unsteady incompressible boundary-layer equations // Quart. J. Mech. and Appl. Math. 2000. V. 53. P. 175–206.


Review

For citations:


Polyanin A.D. Method of Functional Separation of Variables Can Give More Exact Solutions than Methods Based on a Single Differential Constraint. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(5):445-452. (In Russ.) https://doi.org/10.1134/S2304487X19050067

Views: 97


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)