Construction of Exact Solutions of Nonlinear Differential Equations by the Splitting Method
https://doi.org/10.1134/S2304487X20010071
Abstract
Various classes of nonlinear ordinary differential equations are considered. To construct exact solutions in an implicit form, the splitting method based on the generalized separation of variables is used. The main attention is paid to nonlinear equations of a sufficiently general form that contain one or more arbitrary functions. It is important to note that the exact solutions of nonlinear differential equations that depend on arbitrary functions and, therefore, are sufficiently general are of the greatest practical interest for testing numerical and approximate methods for solving various problems. Examples of particular nonlinear equations and their exact solutions are given. In some cases, it is possible to find general solutions of the equations or lower their order. The approach used can be generalized to nonlinear partial differential equations. New exact solutions with functional separation of variables are obtained for reaction-diffusion type equations.
Keywords
About the Authors
A. D. PolyaninRussian Federation
119526
Moscow
L. V. Linchuk
Russian Federation
195251
191186
St. Petersburg
References
1. Stepanov V. V., Kurs differentsial’nykh uravneniy [Course of Differential Equations], 8th ed., Fizmatlit, Moscow, 1959 (in Russian).
2. Murphy G. M., Ordinary Differential Equations and Their Solutions, D. Van Nostrand, New York, 1960.
3. Matveev N. M., Metody integrirovaniya obyknovennykh differentsial’nykh uravneniy [Integration Methods of Ordinary Differential Equations], 2nd ed., Vysshaya shkola, Moscow, 1963 (in Russian).
4. Kamke E., Spravochnik po obyknovennym differentsial’nym uravneniyam [Handbook of Ordinary Differential Equations], 5th ed., Nauka, Moscow, 1976 (in Russian).
5. Elsgolts L. E., Differentsial’nyye uravneniya i variatsionnoye ischisleniye [Differential Equations and Calculus of Variations], Nauka, Moscow, 1969 (in Russian).
6. Polyanin A. D., Zaitsev V. F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Boca Raton: CRC Press, 2018.
7. Polyanin A. D., Manzhirov A. V. Handbook of Mathematics for Engineers and Scientists. Boca Raton: Chapman & Hall/CRC Press, 2007.
8. Kamke E., Spravochnik po differentsial’nym uravneniyam v chastnykh proizvodnykh pervogo poryadka [Handbook of First-Order Partial Differential Equations], Nauka, Moscow, 1966 (in Russian).
9. Zaitsev V. F., Polyanin A. D., Spravochnik po differentsial’nym uravneniyam s chastnymi proizvodnymi pervogo poryadka [Handbook of First-Order Partial Differential Equations] Fizmatlit, Moscow, 2003 (in Russian).
10. Tikhonov A. N., Samarsky A. A., Uravneniya matematicheskoy fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1972 (in Russian).
11. Babich V. M., Kapilevich M. B., Mikhlin S. G. et al., Lineynyye uravneniya matematicheskoy fiziki [Linear Equations of Mathematical Physics], Nauka, Moscow, 1964 (in Russian).
12. Korn G. A., Korn T. M., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Handbook of Mathematics for Scientists and Engineers], Nauka, Moscow, 1968 (in Russian).
13. Polyanin A. D., Nazaikinskii V. E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed. Boca Raton: Chapman & Hall/CRC Press, 2016.
14. Galaktionov V. A., Posashkov S. A., Svirshchevskii S. R. Generalized separation of variables for differential equations with polynomial nonlinearities // Differential Equations. 1995. V. 31. № 2. P. 233–240.
15. Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineynykh uravneniy matematicheskoy fiziki i mekhaniki [Solution methods for nonlinear equations of mathematical physics and mechanics], Fizmatlit, Moscow, 2005 (in Russian).
16. Galaktionov V. A., Svirshchevskii S. R. Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. Boca Raton: Chapman & Hall/CRC Press, 2007.
17. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd ed. Boca Raton: CRC Press, 2012.
18. Polyanin A. D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction-diffusion equations with variable coefficients // Int. J. Non-Linear Mech. 2019. V. 111. P. 95–105.
19. Polyanin A. D. Construction of functional separable solutions in implicit form for non-linear Klein–Gordon type equations with variable coefficients // Int. J. Non-Linear Mech. 2019. V. 114. P. 29–40.
20. Polyanin A. D., Zhurov A. I. Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations // Applied Math. Letters. 2020. V. 100. 106055.
21. Polyanin A. D., Metody funktsional’nogo razdeleniya peremennykh i ikh primeneniye v matematicheskoy fizike [Methods of functional separation of variables and their application in mathematical physics], Math. Modeling and Comput. Methods, 2019, no. 1, pp. 65–97.
22. Polyanin A. D. Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations // Mathematics. 2020. V. 8. № 1. 90.
23. Malfliet W., Hereman W. The tanh method: exact solutions of nonlinear evolution and wave equations // Phys Scripta. 1996. V. 54. P. 563–568.
24. Parkes E. J., Duffy B. R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations // Computer Physics Communications. 1996. V. 98. P. 288–300.
25. Fan E. Extended tanh-function method and its applications to nonlinear equations // Phys. Letters A. 2000. V. 277. № 4–5. P. 212–218.
26. Elwakila S. A., El-Labany S. K., Zahran M. A., Sabry R. Modified extended tanh-function method for solving nonlinear partial differential equations // Phys. Letters A. 2002. V. 299. № 2–3. P. 179–188.
27. Yan Z. The extended Jacobian elliptic function expansion method and its application in the generalized Hirota–Satsuma coupled KdV system // Chaos, Solitons & Fractals. 2003. V. 15. № 3. P. 575–583.
28. Wazwaz A.-M. The sine-cosine method for obtaining solutions with compact and noncompact structures // Appl. Math. & Comput. 2004. V. 159. № 2. P. 559–576.
29. Kudryashov N. A. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos, Solitons & Fractals, 2005. V. 24. № 5. P. 1217–1231.
30. Wazwaz A.-M. The tanh method and the sine-cosine method for solving the KP-MEW equation // Int. J. Computer Math. 2005. V. 82. № 2. P. 235–246.
31. He J. H., Wu X. H. Exp-function method for nonlinear wave equations // Chaos, Solitons & Fractals. 2006. V. 30. № 3. P. 700–708.
32. He J. H., Abdou M. A. New periodic solutions for non-linear evolution equation using Exp-method // Chaos Solitons & Fractals. 2007. V. 34. P. 1421–1429.
33. Bekir A., Boz A. Exact solutions for nonlinear evolution equations using Exp-function method // Phys. Letters A. 2008. V. 372. № 10. P. 1619–1625.
34. Chun C. Soliton and periodic solutions for the fifth-order KdV equation with the Exp-function method // Phys. Letters A. 2008. V. 372. № 16. P. 2760–2766.
35. Kudryashov N. A., Loguinova N. B. Extended simplest equation method for nonlinear differential equations // Appl. Math. & Comput. 2008. V. 205. № 1. P. 396–402.
36. Salas A. H. Exact solutions for the general fifth KdV equation by the exp function method // Appl. Math. & Comput. 2008. V. 205. № 1. P. 291–297.
37. Erbas B., Yusufoglu E. Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation // Chaos, Solitons & Fractals. 2009. V. 41. № 5. P. 2326–2330.
38. Kudryashov N. A., Loguinova N. B. Be careful with the Exp-function method // Commun. Nonlinear Science & Numer. Simulation. 2009. V. 14. № 5. P. 1881–189.
39. Zhang S., Tonga J. L., Wanga W. Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations // Comp. Math. Appl. 2009. V. 58. № 11–12. P. 2294–2299.
40. Parkes E. J. Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations // Appl. Math. Comp. 2010. V. 217. № 4. P. 1749–1754.
41. Zhang L. The extended tanh method and the exp-function method to solve a kind of nonlinear heat equation // Math. Prob. Engng. 2010. V. 2010. 935873.
42. Polyanin A. D., Pereopredelennyye sistemy nelineynykh obyknovennykh differentsial’nykh uravneniy s parametrami i ikh prilozheniya [Overdetermined systems of non-linear ordinary differential equations with parameters and their applications], Vestnik NIYaU MIFI, 2016, vol. 5, no. 2, pp. 122–136 (in Russian).
43. Polyanin A. D., Shingareva I. K. Overdetermined systems of ODEs with parameters and their applications: The method of differential constraints and the generalized separation of variables in PDEs // Math. Advances in Pure & Appl. Sciences. 2018. V. 1. № 1. P. 1–22.
44. Polyanin A. D., Zaitsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition. Boca Raton: Chapman & Hall/CRC Press, 2003.
45. Polyanin A. D., Zhurov A. I., On one method for constructing exact solutions of nonlinear equations of mathematical physics, Doklady Mathematics, vol. 100, no. 3, pp. 1–4.
Review
For citations:
Polyanin A.D., Linchuk L.V. Construction of Exact Solutions of Nonlinear Differential Equations by the Splitting Method. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(1):32-44. (In Russ.) https://doi.org/10.1134/S2304487X20010071