Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Нелинейные динамические процессы, описываемые системой уравнений Радхакришнана–Кунду–Лаксманана

https://doi.org/10.1134/S2304487X20010058

Аннотация

Об авторах

С. Ф. Лаврова
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



Н. А. Кудряшов
Национальный исследовательский ядерный университет “МИФИ”
Россия

115409

Москва



Список литературы

1. Biswas Anjan. “Optical solitons: Quasi-stationarity versus Lie transform.” Optical and Quantum Electronics. 2003. 35.10. P. 979–998.

2. Khalique C. M., Biswas A. “Optical solitons with parabolic and dual-power law nonlinearity via Lie symmetry analysis.” Journal of Electromagnetic Waves and Applications. 2009. 23.7. P. 963–973.

3. Kohl Russell et al. “Optical soliton perturbation in a non-Kerr law media.” Optics & Laser Technology. 2008. 40.4. P. 647–662.

4. Topkara Engin et al. “Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients.” Communications in Nonlinear Science and Numerical Simulation. 2010. 15. 9. P. 2320–2330.

5. Konar S., Mishra M., Soumendu Jana. “Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media.” Physics Letters A. 2007. 362.5-6. P. 505–510.

6. Yan Zhenya. “Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres.” Chaos, Solitons & Fractals. 2003. 16. 5. P. 759–766.

7. Triki Houria, and Abdul-Majid Wazwaz. “Combined optical solitary waves of the Fokas—Lenells equation.” Waves in Random and Complex Media. 2017. 27. 4. P. 587–593.

8. Biswas A. “1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation.” Physics Letters A. 2009. 373.30. P. 2546–2548.

9. Zhang Jianming, Shuming Li, and Hongpeng Geng. “Bifurcations of exact travelling wave solutions for the generalized RKL equation.” J. Appl. Anal. Comput. 2016. 6.4. P. 1205–1210.

10. Biswas A. Optical soliton perturbation with Radhakrishnan–Kundu–Laksmanan equation by traveling wave hypothesis, Optik. 2018. V. 171. P. 217–220.

11. Biswas A., Ekici M., Sonmezoglu A., Alshomrani A. S., Optical soliton with Radhakrishnan–Kundu–Laksmanan by extended trial function scheme, Optik. 2018. V. 160. P. 415–427.

12. Gonzalez-Gaxiola O., Anjan Biswas, Optical solitons with Radhakrishnan–Kundu–Laksmanan equation by Laplace–Adomian decomposition method, Optik. 2019. V. 179. 434–442.

13. Kydryashov N. A., Safonova D. V., A. Biswas, Painleve analysis and solution to travelling wave reduction of Radhakrishnan-Kundu-Lakshmanan equation, Regular and Chaotic Dynamics. 2019. 24.6. P. 607–614.

14. Lu Dianchen, Aly R. Seadawy, and Mostafa M. A. Khater. “Dispersive optical soliton solutions of the generalized Radhakrishnan–Kundu–Lakshmanan dynamical equation with power law nonlinearity and its applications.” Optik. 2018. 164. P. 54–64.

15. Benettin Giancarlo et al. “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory.” Meccanica. 1980. 15. 1. P. 9–20.


Рецензия

Для цитирования:


Лаврова С.Ф., Кудряшов Н.А. Нелинейные динамические процессы, описываемые системой уравнений Радхакришнана–Кунду–Лаксманана. Вестник НИЯУ МИФИ. 2020;9(1):45-49. https://doi.org/10.1134/S2304487X20010058

For citation:


Lavrova S.F., Kudryashov N.A. Nonlinear Dynamic Processes Described by the Radhakrishnan–Kundu–Lakshmanan Equations. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(1):45-49. (In Russ.) https://doi.org/10.1134/S2304487X20010058

Просмотров: 98


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)