Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Verification of the Reconstruction of Pole Figures from Electron Backscatter Diffraction Measurements Performed under Variation of Experimental Parameters

https://doi.org/10.1134/S2304487X2001006X

Abstract

   The adequacy of the reconstruction of pole figures (PFs) from the results of the electron backscatter diffraction (EBSD) experiment has been verified using a new technique for estimating the similarity of two PFs. This method is based on an analog of the Kolmogorov–Smirnov criterion on the S2 sphere and takes into account the probabilistic nature of PFs. This method also proposes a quantitative similarity measure for the compared PFs. In this study, this method is utilized to quantitatively compare the PF reconstructed from the results of the EBSD experiment to the PF of a polycrystalline sample in order to estimate the effect of the selected values of the EBSD experiment parameters on the underlying distribution. Such a comparison becomes possible by mathematical modeling of a polycrystalline sample and a subsequent EBSD experiment. A new similarity measure between the sample PF and the PF obtained from the result of model EBSD measurements under the variation of the experimental parameters, namely, the scanning step and tolerance angle, has been calculated. The results have been compared to similar results for the RP factor widely used to estimate the differences between two PFs. Both metrics are utilized to study the effect of the texture sharpness parameter of the polycrystalline sample on the results of the EBSD experiment with various scanning steps and tolerance angles.

About the Authors

A. O. Ovchinnikova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



T. I. Savyolova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Wright S. I., Field D. P. Scalar of Texture Heterogeneity. Materials Science Forum. 2005. V. 495–7. P. 207.

2. Wright S. I. A Parametric Study of Electron Backscatter Diffraction based Grain Size Measurements. Practical Metallography, 2010. V. 47. № 1. P. 16.

3. Mironov S. Yu., Danilenko V. N., Myshlyaev M. M., Korneva A. V. Analysis of the Spatial Orientation Distribution of Building Blocks in Polycrystals as Determined Using Transmission Electron Microscopy and a Backscattered Electron Beam in a Scanning Electron Microscope, 2005, Physics of the Solid State, vol. 47, № 7, pp. 1258–1266.

4. Tonga V., Jianga J., Wilkinsonb A. J., Brittona T. B. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements. Ultramicroscopy. 2015. V. 155. P. 62.

5. Randle V. Introduction to texture analysis: macrotexture, microtexture and orientation mapping: 2nd ed. Boca Raton: CRC Press, 2010. P. 488.

6. Humphreys F. J. Grain and subgrain characterisation by electron backscatter diffraction, Journal of materials science. 2001. V. 36. P. 3833.

7. Antonova A. O., Savyolova T. I. Error Estimation for Computed Polycrystalline Texture Characteristics by Varying Measurement Parameters in Electron Microscopy Methods. Comput. Math. Math. Phys., 2015, vol. 55, № 2, pp. 317–329.

8. Antonova A. O., Savyolova T. I. Study of the Influence of the Parameters of an Experiment on the Simulation of Pole Figures of Polycrystalline Materials Using Electron Microscopy. Cristallogr. Rep., 2016, vol. 61, № 3, pp. 523–531.

9. Ovchinnikova A. O., Savyolova T. I. A novel approach of the grain structure modelling in the framework of polycrystalline specimen and EBSD experiment simulation. IOP Conf. Series: Journal of Physics: Conf. Series. 2019. V. 1205. P. 012043.

10. Viglin S. A. Kolichestvennaya mera tekstury polikristallicheskogo materiala. Teksturnaya funkciya [A quantitative measure of the texture of a polycrystalline material. Texture function]. Fizika tvyordogo tela, 1960, vol. 2, № 10, pp. 2463–2476.

11. Bunge H. J. Experimental Techniques of Texture Analysis. Experimental Techniques of Texture Analysis: ed.by Bunge H. J. DGM Informationsgesellschaft mbH. 1986. P. 1.

12. Welch P. I. Neutron Diffraction Texture Analysis. Experimental Techniques of Texture Analysis: ed. by Bunge H. J. DGM Informationsgesellschaft mbH. 1986. P. 183.

13. Bunge H. J., Grossterlinden R., Haase A., Ortega R., Szpunar J. A., Van Houtte P. Advanced Experimental Techniques in X-ray Texture Analysis. Materials Science Forum. 1994. V. 157. P. 71.

14. Matthies S., Wenk H.-R., Vinel G. W. Some Basic Concepts of Texture Analysis and Comparison of Three Methods to Calculate Orientation Distributions from Pole Figures. Journal of Applied Crystallography. 1988. V. 21. P. 285.

15. Lychagina T., Nikolayev D. Quantitative comparison of measured crystallographic texture Journal of Applied Crystallography. 2016. V. 49. P. 1290.

16. Kolmogoroff A. N. Sulla determinazione empirica di una legge di distribuzione. G. Inst. Ital. Attuari. 1933. V. 4. P. 83.

17. Smirnov N. V. On the estimation of the discrepancy between empirical curves of distributions for two independent samples. Moscow State Univ. Bull. 1939. V. 2. P. 3.

18. HKL CHANNEL 5 Software [https://www.oxinst.com/].

19. Savyolova T. I., Ivanova T. M. and Sypchenko M. V. Metody resheniya nekorrektnyh zadach teksturnogo analiza i ih prilozheniya[Methods for Solving Ill-Posed Problems in Texture Analysis and Their Applications]. Moscow, NRNU MEPhI, 2012. 268 p.

20. Borovkov M., Savelova T. The computational approaches to calculate normal distributions on the rotation group. Mag. Appl. Cristallogr. 2007. V. 40. P. 449.

21. Bunge H. J. Texture Analysis in Material Sciences. Mathematical Methods. Butterworths Publ. London, 1982. P. 593.

22. Roginskii K. N., Savyolova T. I. Polar figure computation by a kernel method from a set of individual grain orientations on SO(3). Comput. Math. and Math. Phys., 2010, vol. 50, pp. 949.

23. Koay C. G. A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere. J. Comput. Sci. 2011. V. 2. P. 88.

24. Aivazyan S. A., Mhitaryan V. S. Prikladnaya statistika. Osnovy ekonometriki. Tom 1: Teoriya veroyatnosti i prikladnaya statistika [Applied statistics. Fundamentals of Econometrics, Vol. 1: Probability theory and applied statistics]. Moscow, Unity Data, 2001. 656 p.

25. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes: the Art of Scientific Computing 3rd Edition. Cambridge University Press, 2007. P. 1235.

26. Tonga V., Jianga J., Wilkinsonb A. J., Brittona T. B. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements. Ultramicroscopy. 2015. V. 155. P. 62.

27. Lin H. P., Ng T. S., Chen C. L., Kuo J. C., Ding S. X. Comparison of deformation texture in FePd alloy via X-ray diffraction and electron backscatter diffraction techniques. Micron. 2013. V. 44. P. 433.


Review

For citations:


Ovchinnikova A.O., Savyolova T.I. Verification of the Reconstruction of Pole Figures from Electron Backscatter Diffraction Measurements Performed under Variation of Experimental Parameters. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(1):58-65. (In Russ.) https://doi.org/10.1134/S2304487X2001006X

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)