Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Soltary Wave Solutions of the Generalized Nonlinear Schrödinger Equation with Cubic, Quintic, and Septic Nonlinearities

https://doi.org/10.1134/S2304487X20020054

Abstract

   The family of nonlinear Schrödinger equations describes a number of physical phenomena. The simulation and analysis of the propagation of highly dispersive optical pulses with allowance for several non-linearity types are currently of great interest. The dispersion is determined by the order of the governing equation. In this work, we consider the sixth order equation with cubic, quintic, and septic nonlinearities is analyzed. The search for solitary waves propagating in a nonlinear medium plays an important role in the study of the propagation of optical pulses. To solve this problem, the method based on the search for solitary wave solutions is used. At the first step, the substitution of travelling wave variables reduces the initial equation to the system of two differential equations corresponding to the real and imaginary parts of the initial equation. Restrictions on the parameters have been obtained from the equation corresponding to the imaginary part. The pole order of the equation corresponding to the real part has been determined. A nonzero pole order makes it possible to find solitary wave solutions at the next step. These solutions have been constructed and plots of solutions at different parameters have been analyzed.

About the Authors

K. V. Kan
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Kudryashov N. A. First integrals and general solution of the traveling wave reduction for Schrödinger equation with anti-cubic nonlinearity // Optic. 2019. V. 185. P. 665–671.

2. Kudryashov N. A. Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubicquintic nonlinearity // Optic. 2019. V. 188. P. 27–35.

3. Kudryashov N. A. A generalized model for description of propagation pulses in optical fiber // Optic. 2019. V. 189. P. 42–52.

4. Kudryashov N. A. Construction of nonlinear differential equations for description of propagation pulses in optical fiber // 2019. [Online] Available: https://www.sciencedirect.com/science/article/pii/S0030402619308411.

5. Kudryashov N. A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber // 2019. [Online] Available: https://www.sciencedirect.com/science/article/pii/S0030402619309374.

6. Bejtli D., Rajt E. Volokonnaya optika: teoriya i praktika / Per. s angl. – M.: KUDIC-OBRAZ, 2006. – 320 s.

7. Biswas A., Ekici M., Sonmezoglu A., and Belic M. R. Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion // Optik. V. 182. P. 897–906.

8. Kudryashov N. A. Metody nelinejnoj matematicheskoj fiziki : Uchebnoe posobie. – M.: MIFI, 2008. 352 s.

9. Kudryashov N. A. One method for finding exact solutions of nonlinear differential equations // Communications in Nonlinear Science and Numerical Simulation. 2012. V. 17. № 6. P. 2248–2253.

10. Kudryashov N. A. Polynomials in logistic function and solitary waves of nonlinear differential equations // Applied Mathematics and Computation. 2013. V. 219. № 17. P. 9245–9253.

11. Kudryashov N. A. Logistic function as solution of many nonlinear differential equations // Applied Mathematical Modelling. 2015. V. 39. № 18. P. 5733–5742.

12. Kudryashov N. A. Solitary wave solutions of hierarchy with non-local nonlinearity // 2019. V. 103. [Online] Available: https://www.sciencedirect.com/science/article/pii/S0893965919304811.

13. Kudryashov N. A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations // Optic. 2020. V. 371. [Online] Available: https://www.researchgate.net/publication/340354121_Highly_dispersive_solitary_wave_solutions_of_perturbed_nonlinear_Schrodinger_equations

14. M. D. Ablovic, Bao-Fen Fen, Syuj-Dan’ Lo, Z. Musslimani, S. Metod obratnoj zadachi rasseyaniya dlya nelokal’nogo nelinejnogo uravneniya Shredingera s obrashcheniem prostranstva-vremeni, TMF, 196: 3 (2018), 343–372; Theoret. and Math. Phys., 196: 3 (2018), 1241–1267.

15. Kudryashov, N. A. Solitony v prirode i fizike // Vestnik nacional’nogo issledovatel’skogo yadernogo universiteta “MIFI”. 2018. Vol. 7. No. 2. P. 113–124.


Review

For citations:


Kan K.V., Kudryashov N.A. Soltary Wave Solutions of the Generalized Nonlinear Schrödinger Equation with Cubic, Quintic, and Septic Nonlinearities. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(2):110-114. (In Russ.) https://doi.org/10.1134/S2304487X20020054

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)