Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Построение точных решений нелинейных уравнений математической физики с запаздыванием с помощью решений более простых уравнений без запаздывания

https://doi.org/10.1134/S2304487X20020108

Аннотация

Об авторах

А. Д. Полянин
Институт проблем механики им. А. Ю. Ишлинского РАН
Россия

119526

Москва



В. Г. Сорокин
Институт проблем механики им. А. Ю. Ишлинского РАН
Россия

119526

Москва



Список литературы

1. Овсянников Л. В. Групповой анализ дифференциальных уравнений / Л. В. Овсянников. – М.: Наука, 1978.

2. Ibragimov N. H. (Ed.). CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 1. Symmetries, Exact Solutions and Conservation Laws. Boca Raton: CRC Press, 1994.

3. Полянин А. Д. Методы решения нелинейных уравнений математической физики и механики / А. Д. Полянин, В. Ф. Зайцев, А. И. Журов. – М.: Физматлит, 2005.

4. Galaktionov V. A., Svirshchevskii S. R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Boca Raton: Chapman & Hall/CRC Press, 2007.

5. Кудряшов Н. А. Методы нелинейной математической физики / Н. А. Кудряшов. – Долгопрудный: Изд. Дом Интеллект, 2010.

6. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd Edition. Boca Raton: CRC Press, 2012.

7. Polyanin A. D. Comparison of the effectiveness of different methods for constructing exact solutions to non-linear PDEs. Generalizations and new solutions // Mathematics. 2019. V. 7. № 5. P. 386.

8. Полянин А. Д. Методы функционального разделения переменных и их применение в математической физике / А. Д. Полянин // Мат. модел. Числ. методы. – 2019. – № 1. – С. 65–97.

9. Polyanin A. D. Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations // Mathematics. 2020. V. 8. № 1. 90.

10. Kudryashov N. A. On exact solutions of families of Fisher equations // Theor. Math. Phys. 1993. V. 94. № 2. P. 211–218.

11. Galaktionov V. A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions // Nonlinear Anal. Theor. Meth. Appl. 1994. V. 23. P. 1595–1621.

12. Andreev V. K., Kaptsov O. V., Pukhnachov V. V., Rodionov A. A. Applications of Group-Theoretical Methods in Hydrodynamics. Kluwer: Dordrecht, 1998.

13. Ludlow D. K., Clarkson P. A., Bassom A. P. Similarity reductions and exact solutions for the two-dimensional incompressible Navier – Stokes equations // Studies Appl. Math. 1999. V. 103. P. 183–240.

14. Ludlow D. K., Clarkson P. A., Bassom A. P. New similarity solutions of the unsteady incompressible boundary-layer equations // Quart. J. Mech. and Appl. Math. 2000. V. 53. P. 175–206.

15. Qu C. Z., Zhang S. L., Liu R. C. Separation of variables and exact solutions to quasilinear diffusion equations with the nonlinear source // Physica D. 2000. V. 144. № 1–2. P. 97–123.

16. Polyanin A. D. Exact solutions to the Navier – Stokes equations with generalized separation of variables // Doklady Physics. 2001. V. 46. № 10. P. 726–731.

17. Estevez P. G., Qu C., Zhang S. Separation of variables of a generalized porous medium equation with nonlinear source // J. Math. Anal. Appl. 2002. V. 275. P. 44–59.

18. Kaptsov O. V., Verevkin I. V. Differential constraints and exact solutions of nonlinear diffusion equations // J. Phys. A: Math. Gen. 2003. V. 36. P. 1401–1414.

19. Zhang S. L., Lou S. Y., Qu C. Z. New variable separation approach: Application to nonlinear diffusion equations // J. Physics A: Math. Gen. 2003. V. 36 (49). P. 12223–12242.

20. Vaneeva O. O., Johnpillai A. G., Popovych R. O., Sophocleous C. Extended group analysis of variable coefficient reaction-diffusion equations with power nonlinearities // J. Math. Anal. Appl. 2007. V. 330. № 2. P. 1363–1386.

21. Ivanova N. M. Exact solutions of diffusion-convection equations // Dynamics of PDE. 2008. V. 5. № 2. P. 139–171.

22. Jia H., Xu W., Zhao X., Li Z. Separation of variables and exact solutions to nonlinear diffusion equations with x-dependent convection and absorption // J. Math. Anal. Appl. 2008. V. 339. P. 982–995.

23. Polyanin A. D., Zhurov A. I. Unsteady axisymmetric boundary-layer equations: Transformations, properties, exact solutions, order reduction and solution method // Int. J. Non-Linear Mech. 2015. V. 74. P. 40–50.

24. Polyanin A. D., Zhurov A. I. Functional and generalized separable solutions to unsteady Navier – Stokes equations // Int. J. Non-Linear Mech. 2016. V. 79. P. 88–98.

25. Polyanin A. D., Zhurov A. I. Direct functional separation of variables and new exact solutions to axisymmetric unsteady boundary-layer equations // Commun. Non-linear Sci. Numer. Simul. 2016. V. 31. № 1–3. P. 11–20.

26. Polyanin A. D., Zhurov A. I. One-dimensional reductions and functional separable solutions to unsteady plane and axisymmetric boundary-layer equations for non-Newtonian fluids // Int. J. Non-Linear Mech. 2016. V. 85. P. 70–80.

27. Cherniha R., Serov M., Pliukhin O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications. Boca Raton: Chapman & Hall/CRC Press, 2018.

28. Polyanin A. D. Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients // Commun. Nonlinear Sci. Numer. Simul. 2019. V. 73. P. 379–390.

29. Polyanin A. D. Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients // Appl. Math. Comput. 2019. V. 347. P. 282–292.

30. Polyanin A. D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction-diffusion equations with variable coefficients // Int. J. Non-Linear Mech. 2019. V. 111. P. 95–105.

31. Polyanin A. D. Construction of functional separable solutions in implicit form for non-linear Klein – Gordon type equations with variable coefficients // Int. J. Non-Linear Mech. 2019. V. 114. P. 29–40.

32. Polyanin A. D., Zhurov A. I. Separation of variables in PDEs using nonlinear transformations: Applications to reaction–diffusion type equations. // Appl. Math. Lett. 2020. V. 1000. 106055.

33. Zhurov A. I., Polyanin A. D. Symmetry reductions and new functional separable solutions of nonlinear Klein – Gordon and telegraph type equations // J. Nonlinear Math. Phys. 2020. V. 27. № 2. P. 227–242.

34. Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer, 1996.

35. Jordan P. M., Dai W., Mickens R. E. A note on the delayed heat equation: instability with respect to initial data // Mech. Res. Commun. 2008. V. 35. P. 414–420.

36. Racke R. Instability of coupled systems with delay // Commun. Pur. Appl. Anal. 2012. V. 11. № 5. P. 1753–1773.

37. Полянин А. Д. Точные решения и качественные особенности гиперболических реакционно-диффузионных уравнений с запаздыванием / А. Д. Полянин, В. Г. Сорокин, А. В. Вязьмин // Теор. основы хим. технологии. – 2015. – Т. 49. – № 5. – С. 527–541.

38. Полянин А. Д.. Реакционно-диффузионные уравнения с запаздыванием: Математические модели и качественные особенности / А. Д. Полянин, В. Г. Сорокин // Вестник НИЯУ МИФИ. – 2017. – Т. 6. – № 1. – С. 41–55.

39. Smith H. L., Zhao X.-Q. Global asymptotic stability of traveling waves in delayed reaction-Ddiffusion equations // SIAM J. Math. Anal. 2000. V. 31. № 3. P. 514–534.

40. Lv G., Wang M. Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations // Non-linearity. 2010. V. 23. 845.

41. Chern I.-L., Mei M., Yang X., Zhang Q. Stability of non-monotone critical traveling waves for reaction–diffusion equations with time-delay // J. Differ. Equations. 2015. V. 259. № 4. P. 1503–1541.

42. Lv G., Wang Z. Stability of traveling wave solutions to delayed evolution equation // J. Dyn. Control Syst. 2015. V. 21. № 2. P. 173–187.

43. Mei M., So J. W.-H., Li M. Y., Shen S. S. P. Asymptotic stability of travelling waves for Nicholson’s blowflies equation with diffusion // P. Roy. Soc. Edinb. A. 2004. V. 134. № 3. P. 579–594.

44. Mei M., Lin C.-K., Lin C.-T., So J. W.-H. Traveling wavefronts for time-delayed reaction–diffusion equation: (I) Local nonlinearity // J. Differ. Equations. 2009. V. 247. № 2. P. 495–510.

45. Polyanin A. D., Sorokin V. G. Nonlinear delay reaction–diffusion equations: Traveling-wave solutions in elementary functions // Appl. Math. Lett. 2015. V. 46. P. 38–43.

46. Meleshko S. V., Moyo S. On the complete group classification of the reaction-diffusion equation with a delay // J. Math. Anal. Appl. 2008. V. 338. P. 448–466.

47. Polyanin A. D., Zhurov A. I. Exact solutions of linear and nonlinear differential-difference heat and diffusion equations with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 54. P. 115–126.

48. Polyanin A. D., Zhurov A. I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 417–430.

49. Polyanin A. D., Zhurov A. I. New generalized and functional separable solutions to nonlinear delay reaction-diffusion equations // Int. J. Non-Linear Mech. 2014. V. 59. P. 16–22.

50. Polyanin A. D., Zhurov A. I. Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. P. 409–416.

51. Polyanin A. D., Zhurov A. I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions // Appl. Math. Lett. 2014. V. 37. P. 43–48.

52. Polyanin A. D., Zhurov A. I. Non-linear instability and exact solutions to some delay reaction-diffusion systems // Int. J. Non-Linear Mech. 2014. V. 62. P. 33–40.

53. Polyanin A. D., Zhurov A. I. The functional constraints method: Application to non-linear delay reaction–diffusion equations with varying transfer coefficients // Int. J. Non-Linear Mech. 2014. V. 67. P. 267–277.

54. Polyanin A. D., Zhurov A. I. The generating equations method: Constructing exact solutions to delay reaction–diffusion systems and other non-linear coupled delay PDEs //Int. J. Non-Linear Mech. 2015. V. 71. P. 104–115.

55. Сорокин В. Г. Точные решения некоторых нелинейных уравнений и систем уравнений в частных производных с запаздыванием / В. Г. Сорокин // Вестник НИЯУ “МИФИ”. – 2016. – Т. 5. – № 3. – С. 199–219.

56. Polyanin A. D. Generalized traveling-wave solutions of nonlinear reaction–diffusion equations with delay and variable coefficients // Appl. Math. Lett. 2019. V. 90. P. 49–53.

57. Sorokin V. G., Polyanin A. D. Nonlinear partial differential equations with delay: Linear stability/instability of solutions, numerical integration // J. Physics: Conf. Series. 2019. V. 1205. 012053.

58. Polyanin A. D., Zhurov A. I. Generalized and functional separable solutions to non-linear delay Klein – Gordon equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 8. P. 2676–2689.

59. Long F.-S., Meleshko S. V. On the complete group classification of the one-dimensional nonlinear Klein – Gordon equation with a delay // Math. Methods Appl. Sci. 2016. V. 39. № 12. P. 3255–3270.

60. Long F.-S., Meleshko S. V. Symmetry analysis of the nonlinear two-dimensional Klein – Gordon equation with a time-varying delay // Math. Methods Appl. Sci. 2017. V. 40. № 13. P. 4658–4673.

61. Сорокин В. Г. Точные решения нелинейных телеграфных уравнений с запаздыванием / В. Г. Сорокин // Вестник НИЯУ МИФИ. – 2019. – Т. 8. – № 5. – С. 453–464.

62. Polyanin A. D., Zhurov A. I. Exact solutions of non-linear differential-difference equations of a viscous fluid with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 57. P. 116–122.


Рецензия

Для цитирования:


Полянин А.Д., Сорокин В.Г. Построение точных решений нелинейных уравнений математической физики с запаздыванием с помощью решений более простых уравнений без запаздывания. Вестник НИЯУ МИФИ. 2020;9(2):115-128. https://doi.org/10.1134/S2304487X20020108

For citation:


Polyanin A.D., Sorokin V.G. Construction of Exact Solutions for Nonlinear Equations of Mathematical Physics with Delay Using Solutions of Simpler Equations without Delay. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(2):115-128. (In Russ.) https://doi.org/10.1134/S2304487X20020108

Просмотров: 120


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)