Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Комплексный инструмент для автоматизированного тонально-эмотивного анализа тематических текстов

https://doi.org/10.56304/S2304487X20030086

Аннотация

Об авторах

А. В. Наумов
Национальный исследовательский центр “Курчатовский институт”
Россия

123182

Москва



А. А. Селиванов
Национальный исследовательский центр “Курчатовский институт”
Россия

123182

Москва



И. А. Молошников
Национальный исследовательский центр “Курчатовский институт”
Россия

123182

Москва



А. Г. Сбоев
Национальный исследовательский центр “Курчатовский институт”; Национальный исследовательский ядерный университет “МИФИ”
Россия

123182

115409

Москва



Список литературы

1. IBM Watson Explorer. Available at: https://www.ibm.com/products/watson-explorer (accessed: 14. 03. 2020).

2. iFORA. Available at: https://issek.hse.ru/news/254274661.html (accessed: 14. 03. 2020).

3. Semantic Archive Platform. Available at: http://www.anbr.ru/ (accessed: 14. 03. 2020).

4. Ma D. et al. Interactive attention networks for aspect-level sentiment classification. arXiv preprint arXiv:1709.00893. 2017.

5. Huang B., Ou Y., Carley K. M. Aspect level sentiment classification with attention-over-attention neural net-works. International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Springer, Cham, 2018. P. 197–206.

6. Peters M. E. et al. Deep contextualized word representations. arXiv preprint arXiv:1802.05365. 2018.

7. Pennington J., Socher R., Manning C. Glove: Global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. P. 1532–1543.

8. Duppada V., Jain R., Hiray S. Seernet at semeval-2018 task 1: Domain adaptation for affect in tweets. arXiv preprint arXiv:1804.06137. 2018.

9. Jabreel M., Moreno A. EiTAKA at SemEval-2018 Task 1: An ensemble of n-channels ConvNet and XGboost regressors for emotion analysis of tweets. arXiv preprint arXiv:1802.09233. 2018.

10. Mohammad S., Kiritchenko S. Understanding emotions: A dataset of tweets to study interactions between affect categories. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). 2018.

11. Mohammad S. M., Bravo-Marquez F. Emotion intensities in tweets. arXiv preprint arXiv:1708.03696. 2017.

12. Straka M., Straková J. Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. 2017. P. 88–99.

13. Moloshnikov I. A. et al. A probabilistic-entropy approach of finding thematically similar documents with creating context-semantic graph for investigating evolution of society opinion. Journal of Physics: Conference Series. IOP Publishing, 2016. V. 681. № 1. P. 012012.

14. Moloshnikov I. A., Sboev A. G., Rybka R. B., & Gydovskikh D. V. An algorithm of finding thematically similar documents with creating context-semantic graph based on probabilistic-entropy approach. Procedia Computer Science, 2015. № 66. P. 297–306.

15. Frey B. J., Dueck D. Clustering by passing messages between data points. Science. 2007. V. 315. № 5814. P. 972–976.

16. Pedregosa F., Varoquaux et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning Research. 2011. № 12. P. 2825–2830.

17. Ma D. et al. Interactive attention networks for aspect-level sentiment classification. arXiv preprint arXiv:1709.00893. 2017.

18. Devlin J. et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018.

19. Kuratov Y., Arkhipov M. Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language. arXiv preprint arXiv:1905.07213. 2019.

20. Mozharova V., Loukachevitch N. Two-stage approach in Russian named entity recognition. International FRUCT Conference on Intelligence, Social Media and Web, ISMW FRUCT 2016. Saint-Petersburg; Russian Federation, doi: 10.1109/FRUCT.2016.7584769

21. Hochreiter S., Schmidhuber J. Long short-term memory. Neural computation. 1997. Vol. 9. № 8. P. 1735–1780.

22. Loukachevitch N., Blinov P., Kotelnikov E., Rubtsova Y., Ivanov V., & Tutubalina E. SentiRuEval: testing object-oriented sentiment analysis systems in Russian. In Proceedings of International Conference Dialog. 2015. V. 2. P. 3–13.

23. Blinov P., Kotelnikov E. V. Semantic similarity for aspect-based sentiment analysis. Russian Digital Libraries Journal. 2015. Vol. 18. № 3–4. P. 120–137.

24. Rusprofiling corpus of russian texts. Available at: http://rusprofilinglab.ru/rusprofiling-atpan/corpus/ (accessed: 14. 03. 2020)

25. Rubtsova Y. Avtomaticheskoe postroenie i analiz korpusa korotkih tekstov (postov mikroblogov) dlja zadachi razrabotki i trenirovki tonovogo klassifikatora [Automatic construction and analysis of the short texts data-set (microblogging posts) for the task of developing and training sentiment classifier]. Inzhenerija znanij i tehnologii semanticheskogo veba. 2012. Vol. 1. P. 109–116.

26. Loukachevitch N., Levchik A. Creating a general russian sentiment lexicon. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16). 2016.

27. Karpovich S. N. The Russian language text corpus for testing algorithms of topic model. SPIIRAS Proceedings. 2015. Vol. 39. P. 123–142.

28. Bastian M., Heymann S., Jacomy M. Gephi: an open source software for exploring and manipulating net-works. Third international AAAI conference on weblogs and social media. 2009.

29. Jacomy M. et al. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PloS one. 2014. № 6. Vol. 9. P. e98679.


Рецензия

Для цитирования:


Наумов А.В., Селиванов А.А., Молошников И.А., Сбоев А.Г. Комплексный инструмент для автоматизированного тонально-эмотивного анализа тематических текстов. Вестник НИЯУ МИФИ. 2020;9(3):279-288. https://doi.org/10.56304/S2304487X20030086

For citation:


Naumov A.V., Selivanov A.A., Moloshnikov I.A., Sboev A.G. Method for Automated Intelligent Emotive and Sentiment Analysis of Texts with a Thematic Focus. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(3):279-288. (In Russ.) https://doi.org/10.56304/S2304487X20030086

Просмотров: 90


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)