Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Exact Solutions of Nonlinear Partial Differential Equations with Pantograph Type Variable Delay

https://doi.org/10.1134/S2304487X20040069

Abstract

   Nonlinear partial differential equations with variable delay of pantograph type are studied. These equations, in addition to the unknown function u = u(x, t), also contain functions with stretching of one or several independent variables of the form u(px, t), u(x, qt), or u(px, qt), where p and q are the scaling parameters (0 < p < 1, 0 < q < 1). Exact solutions of various classes of such equations are described for the first time. Examples of nonlinear partial differential equations with variable delay of pantograph type that allow self-similar solutions are given (note that partial differential equations with constant delay do not have self-similar solutions). Additive, multiplicative, and generalized separable solutions, as well as solutions of a more complex form, are obtained. Special attention is paid to nonlinear partial differential equations of pantograph type of a fairly general form that contain arbitrary functions. In total, more than 40 nonlinear equations with variable delay of pantograph type, admitting exact solutions, are considered. It is shown that some equations can be generalized to the case of delay, which arbitrarily depends on time. The described equations and their exact solutions can be used to formulate test problems designed to check the adequacy and assess the accuracy of numerical and approximate analytical methods for solving the corresponding nonlinear initial-boundary value problems for partial differential equations with variable delay of pantograph type.

About the Authors

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation

119526

Moscow



V. G. Sorokin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation

119526

Moscow



References

1. Bellman R., Cooke K. L. Differential-difference equations. New York, Academic Press, 1963.

2. Elsgolt’s L. E., Norkin S. B. Introduction to the Theory and Application of Differential Equations With Deviating Arguments. New York, Academic Press, 1973.

3. Myshkis A. D. Linear Delay Differential Equations. Moscow, Nauka, 1972 (in Russian).

4. Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer, 1996.

5. Mei M. et al. Traveling wavefronts for time-delayed reaction–diffusion equation: (I) Local nonlinearity // J. Dif. Equations. 2009. V. 247. № 2. P. 495–510.

6. Lv G., Wang Z. Stability of traveling wave solutions to delayed evolution equation // J. Dyn. Control Syst. 2015. V. 21. № 2. P. 173–187.

7. Polyanin A. D., Sorokin V. G. Nonlinear delay reaction–diffusion equations: Traveling-wave solutions in elementary functions // Appl. Math. Lett. 2015. V. 46. P. 38–43.

8. Meleshko S. V., Moyo S. On the complete group classification of the reaction-diffusion equation with a delay // J. Math. Anal. Appl. 2008. V. 338. P. 448–466.

9. Polyanin A. D., Zhurov A. I. Exact solutions of linear and nonlinear differential-difference heat and diffusion equations with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 54. P. 115–126.

10. Polyanin A. D., Zhurov A. I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 417–430.

11. Polyanin A. D., Zhurov A. I. Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. P. 409–416.

12. Polyanin A. D., Zhurov A. I. New generalized and functional separable solutions to nonlinear delay reaction-diffusion equations // Int. J. Non-Linear Mech. 2014. V. 59. P. 16–22.

13. Polyanin A. D., Zhurov A. I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions // Appl. Math. Lett. 2014. V. 37. P. 43–48.

14. Polyanin A. D., Zhurov A. I. Non-linear instability and exact solutions to some delay reaction-diffusion systems // Int. J. Non-Linear Mech. 2014. V. 62. P. 33–40.

15. Polyanin A. D., Zhurov A. I. The functional constraints method: Application to non-linear delay reaction–diffusion equations with varying transfer coefficients // Int. J. Non-Linear Mech. 2014. V. 67. P. 267–277.

16. Polyanin A. D., Zhurov A. I. The generating equations method: Constructing exact solutions to delay reaction–diffusion systems and other non-linear coupled delay PDEs // Int. J. Non-Linear Mech. 2015. V. 71. P. 104–115.

17. Sorokin V. G. Tochnye resheniya nekotoryh nelinejnyh uravnenij i sistem uravnenij v chastnyh proizvodnyh s zapazdyvaniem [Exact solutions of some nonlinear partial differential equations with delay and systems of such equations]. Vestnik NIYaU MIFI, 2016, vol. 5, no. 3, pp. 199–219 (in Russian).

18. Polyanin A. D. Generalized traveling-wave solutions of nonlinear reaction–diffusion equations with delay and variable coefficients // Appl. Math. Lett. 2019. V. 90. P. 49–53.

19. Sorokin V. G., Polyanin A. D. Nonlinear partial differential equations with delay: Linear stability / instability of solutions, numerical integration // J. Physics: Conf. Series. 2019. V. 1205. 012053.

20. Polyanin A. D., Zhurov A. I. Generalized and functional separable solutions to non-linear delay Klein–Gordon equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 8. P. 2676–2689.

21. Polyanin A. D., Sorokin V. G., Vyazmin A. V. Exact solutions and qualitative features of nonlinear hyperbolic reaction-diffusion equations with delay. Theor. Found. Chem. Eng, 2015, vol. 49, no. 5, pp. 622–635.

22. Long F.-S., Meleshko S. V. On the complete group classification of the one-dimensional nonlinear Klein – Gordon equation with a delay // Math. Methods Appl. Sci. 2016. V. 39. № 12. P. 3255–3270.

23. Polyanin A. D., Sorokin V. G. Reakcionno-diffuzionnye uravneniya s zapazdyvaniem: Matematicheskie modeli i kachestvennye osobennosti [Reaction–diffusion equations with delay: Mathematical models and qualitative features]. Vestnik NIYaU MIFI, 2017, vol. 6, no. 1, pp. 41–55 (in Russian).

24. Long F.-S., Meleshko S. V. Symmetry analysis of the nonlinear two-dimensional Klein – Gordon equation with a time-varying delay // Math. Methods Appl. Sci. 2017. V. 40. № 13. P. 4658–4673.

25. Sorokin V. G. Tochnye reshenija nelinejnykh telegrafnykh uravnenij s zapazdyvaniem [Exact solutions of nonlinear telegraph equations with delay]. Vestnik NIYaU MIFI, 2019, vol. 8, no. 5, pp. 453–464 (in Russian).

26. Polyanin A. D., Sorokin V. G. New exact solutions of nonlinear wave type PDEs with delay // Appl. Math. Lett. 2020. Vol. 108, 106512.

27. Polyanin A. D., Sorokin V. G. Postroenie tochnykh reshenij nelinejnykh uravnenij matematicheskoj fiziki s zapazdyvaniem s pomoshh’ju reshenij bolee prostykh uravnenij bez zapazdyvanija [Construction of exact solutions for nonlinear equations of mathematical physics with delay using solutions of simpler equations without delay]. Vestnik NIYaU MIFI, 2020, vol. 9, no. 2, pp. 115–128 (in Russian).

28. Polyanin A. D., Sorokin V. G. A method for constructing exact solutions of nonlinear delay PDEs. J. Math. Anal. Appl. 2021. V. 494. № 2. 124619.

29. Polyanin A. D., Zhurov A. I. Exact solutions of non-linear differential-difference equations of a viscous fluid with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 57. P. 116–122.

30. Jordan P. M., Dai W., Mickens R. E. A note on the delayed heat equation: Instability with respect to initial data // Mech. Research Comm. 2008. V. 35. P. 414–420.

31. Ockendon J. R., Tayler A. B. The dynamics of a current collection system for an electric locomotive // Proc. R. Soc. Lond. A. 1971. V. 332. P. 447–468.

32. Derfel G., van Brunt B., Wake G. C. A cell growth model revisited // Functional Differential Equations. 2012. V. 19. № 1–2. P. 71–81.

33. Zaidi A. A., van Brunt B., Wake G. C. Solutions to an advanced functional partial differential equation of the pantograph type // Proc. R. Soc. A. 2015. V. 471. 20140947.

34. Ambartsumyan V. A. On the fluctuation of the brightness of the Milky Way // Dokl. Akad. Nauk SSSR. 1944. V. 44. P. 223–226.

35. Dehghan M., Shakeri F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics // Phys. Scripta. 2008. V. 78. № 6. 065004.

36. Ajello W. G., Freedman H. I., Wu J. A model of stage structured population growth with density depended time delay // SIAM J. Appl. Math. 1992. V. 52. P. 855–869.

37. Mahler K. On a special functional equation // J. London Math. Soc. 1940. V. 1. № 2. P. 115–123.

38. Ferguson T. S. Lose a dollar or double your fortune. In: Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability, vol. III (eds. L. M. Le Cam et al.), pp. 657–666. Berkeley: Univ. California Press, 1972.

39. Robinson R. W. Counting labeled acyclic digraphs. In: New Directions in the Theory of Graphs (ed. F. Harari), pp. 239–273. New York: Academic Press, 1973.

40. Gaver D. P. An absorption probablility problem // J. Math. Anal. Appl. 1964. V. 9. P. 384–393.

41. Fox L. et al. On a functional differential equation // IMA J. Appl. Math. 1971. V. 8. P. 271–307.

42. Iserles A. On the generalized pantograph functional differential equation // Eur. J. Appl. Math. 1993. V. 4. № 1. P. 1–38.

43. Kato T., McLeod J. B. Functional-differential equation y<sup>1</sup> = ay(λt) + by(t) // Bull. Amer. Math. Soc. 1971. V. 77. № 6. P. 891–937.

44. Liu M. Z., Li D. Properties of analytic solution and numerical solution of multi-pantograph equation // Appl. Math. Comput. 2004. V. 155. № 3. P. 853–871.

45. Yüzbasi S., Sezer M. An exponential approximation for solutions of generalized pantograph-delay differential equations // Appl. Math. Modelling. 2013. V. 37. № 22. P. 9160–9173.

46. Doha E. H. et al. A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations // Appl. Numer. Math. 2014. V. 77. P. 43–54.

47. Patade J., Bhalekar S. Analytical solution of pantograph equation with incommensurate delay // Phys. Sci. Rev. 2017. V. 2. № 9. 20165103.

48. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd Edition. Boca Raton: CRC Press, 2012.


Review

For citations:


Polyanin A.D., Sorokin V.G. Exact Solutions of Nonlinear Partial Differential Equations with Pantograph Type Variable Delay. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(4):315-328. (In Russ.) https://doi.org/10.1134/S2304487X20040069

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)