Parameters of the SIR Model for the First and Second Waves of COVID-19 in Moscow
https://doi.org/10.1134/S2304487X20060048
Abstract
The susceptible–infected–removed (SIR) model, which is a compartmental mathematical model of epidemic outbreak, is considered in the form of the recently proposed one-parameter model. For the particular case of Moscow, the parameters of the model are found that describe the first and second waves of the COVID-19 epidemic. We have analyzed the parameter δ = β/(αN) that determines the behavior of the reduced SIR model dimensionless compartment variables and which is equal to the peak proportion of the infected persons. The results show that both waves can be fitted with the SIR model with satisfactory accuracy. The parameter δ, as well as the infected-to-removed transition rate β, can be asserted equal for the two waves. On the contrary, the susceptible-to-infected transition rate α and the size N of the population potentially exposed to the infection proved to have changed in the second peak compared to the first one. Thus, the parameter δ can be used as an unambiguous and robust characteristic of the dynamics of the outbreak in a particular region.
About the Authors
N. A. KudryashovRussian Federation
115409
Moscow
R. B. Rybka
Russian Federation
123182
Moscow
A. G. Sboev
Russian Federation
115409
123182
Moscow
A. V. Serenko
Russian Federation
123182
Moscow
References
1. Matjaž Perc, Nina Gorišek Miksić, Mitja Slavinec, Andraž Stožer. Forecasting COVID-19 // Frontiers in Physics. 2020. V. 8. P. 127.
2. Binti Hamzah F. A., Lau C., Nazri H., Ligot D. V., Lee G., Tan C. L., Shaib M. K. B. M., Zaidon U. H. B., Abdullah A. B., Chung M. H. et al. CoronaTracker: worldwide COVID-19 outbreak data analysis and prediction // Bull. World Health Organ. 2020. V. 1. P. 32.
3. Zifeng Yang, Zhiqi Zeng, Ke Wang, Sook-San Wong, Wenhua Liang, Mark Zanin, Peng Liu, Xudong Cao, Zhongqiang Gao, Zhitong Mai et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions // Journal of Thoracic Disease. 2020. V. 12 (3). P. 165.
4. Anastassopoulou C., Russo L., Tsakris A., Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak // PLOS ONE. 2020. V. 15. № 3. P. 1–21.
5. Wu J. T., Leung K., Leung G. M. Nowcasting and fore-casting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study // The Lancet. 2020. V. 395 (10225). P. 689–697.
6. Rustam F., Reshi A. A., Mehmood A., Ullah S., On B., Aslam W., Choi G. S. COVID-19 future forecasting using supervised machine learning models // IEEE Access. 2020. V. 8. P. 101489–101499.
7. Petropoulos F., Makridakis S. Forecasting the novel coronavirus COVID-19 // PLоS ONE. 2020. V. 15 (3). P. 1–8.
8. Abdelhafid Zeroual, Fouzi Harrou, Abdelkader Dairi, Ying Sun. Deep learning methods for forecasting COVID-19 time-series data: A comparative study // Chaos, Solitons & Fractals. 2020. V. 140. P. 110121.
9. Peipei Wang, Xinqi Zheng, Gang Ai, Dongya Liu, Bangren Zhu. Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran // Chaos, Solitons & Fractals. 2020. V. 140. P. 110214.
10. Roda W. C., Varughese M. B., Han D., Li M. Y. Why is it difficult to accurately predict the COVID-19 epidemic? // Infectious Disease Modelling. 2020. V. 5. P. 271–281.
11. Nicola Piovella. Analytical solution of SEIR model describing the free spread of the COVID-19 pandemic // Chaos, Solitons & Fractals. 2020. V. 140. P. 110243.
12. Kröger M., Schlickeiser R. Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A: time-independent reproduction factor // Journal of Physics A: Mathematical and Theoretical. 2020. V. 53. № 50. P. 505601.
13. Barlow N. S., Weinstein S. J. Accurate closed-form solution of the SIR epidemic model // Physica D: Nonlinear Phenomena. 2020. V. 408. P. 132540.
14. Prodanov D. Analytical parameter estimation of the SIR epidemic model. Applications to the COVID-19 pandemic. arXiv preprint, page arXiv: 2010.07000, October 2020.
15. Kudryashov N. A., Chmykhov M. A., Vigdorowitsch M. Analytical features of the SIR model and their applications to COVID-19 // Applied Mathematical Modelling. 2021. V. 90. P. 466–473.
16. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics // Proc. R. Soc. London. Ser. A: Containing papers of a mathematical and physical character. 1927. V. 115 (772). P. 700–721.
17. Kudryashov N. A., Chmykhov M. A. Priblizhennye resheniya SIR-modeli dlya opisaniya koronavirusa [Approximate Solutions of The SIR–model for Describing the Coronavirus]. Vestnik Natsional’nogo Issledovatel’skogo Yadernogo Universiteta “MEPhI”, 2020. (to appear) (in Russian)
18. Moré J. J. The Levenberg-Marquardt algorithm: Implementation and theory / In Numerical Analysis, Ed. by G. A. Watson. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978. P. 105–116.
19. Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., Brett M., Wilson J., Millman K. J., Mayorov N., Nelson A. R. J., Jones E., Kern R., Larson E., Carey C. J., İlhan Polat, Yu Feng, Moore E. W., Vander Plas J., Laxalde D., Perktold J., Cimrman R., Henriksen Ian, Quintero E. A., Harris Ch. R., Archibald A. M., Ribeiro A. H., Pedregosa F., van Mulbregt P. SciPy 1.0: Fundamental algorithms for scientific computing in python // Nature Methods. 2020. V. 17. P. 261–272.
Review
For citations:
Kudryashov N.A., Rybka R.B., Sboev A.G., Serenko A.V. Parameters of the SIR Model for the First and Second Waves of COVID-19 in Moscow. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2020;9(6):561-566. (In Russ.) https://doi.org/10.1134/S2304487X20060048