Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Software Implementation of the Algorithm for Processing Wavelet Coefficients in Problems of Experimental Data Analysis

https://doi.org/10.1134/S2304487X21010120

Abstract

   A modern method based on the wavelet transform has been proposed to clean diffractometric measurement data from noise. This method involves a multilevel one-dimensional discrete wavelet decomposition of the diffraction pattern and allows decomposing the source signal into approximating and detailing coefficients containing information with useful and noise components. The noise component of the diffraction pattern is mainly manifested in the detail coefficients obtained at the lowest decomposition level, to which threshold processing must be applied. This removes sufficiently small coefficients that are considered noise. The reconstruction of the diffraction pattern from the detail coefficients that have passed this processing will significantly reduce the noise level and, as a result, the localization error of the diffraction maxima. In order to obtain the best picture, it is necessary to use certain parameters for wavelet processing. In this work, the multilevel wavelet transform of the original diffraction pattern has been performed using real wavelets of various families with further analysis of the dependence of the processing quality on the choice of a basis. The efficiency of various algorithms for automatic threshold processing of decomposition coefficients in the MatLab software environment and the influence of the choice of thresholding parameters on the quality of cleaning are investigated. The results obtained are evaluated by comparing the standard deviation of the reconstructed and original diffraction patterns, as well as by comparing them visually. Examples of filtering diffraction patterns by the proposed method are given. In conclusion, the optimal parameters of thresholding for
processing diffraction patterns are given. The analysis of the displacement of the location of peaks on the processed diffraction pattern is performed. The detected peaks, which could not be localized on the original spectra, have been interpreted.

About the Authors

S. B. Moskovsky
Yaroslavl State University
Russian Federation

150000

Yaroslavl



A. N. Sergeev
Yaroslavl State University
Russian Federation

150000

Yaroslavl



E. I. Sidorova
Yaroslavl State University
Russian Federation

150000

Yaroslavl



А. A. Marudov
Yaroslavl State University
Russian Federation

150000

Yaroslavl



References

1. Dobeshi I. Desyat’ lektsiy po veyvletam [Ten lectures on wavelets]. Izhevsk: NITS Regulyarnaya i khaoticheskaya dinamika. 2001. 464 р. (in Russian)

2. Astaf’yeva N. M. Veyvlet-analiz: osnovy teorii i primery primeneniya [Wavelet Analysis: Theory Foundations and Application Examples]. UFN. 1996, no 166 (11), pp. 1145–1170. (in Russian)

3. Filipov T. K. Primeneniye Veyvlet-preobrazovaniya informatsii pri tekhnicheskom analize [Application of Wavelet transform of information in technical analysis]. Nauchno tekhnicheskiye vedomosti, 2012, no. 5 (157). рр. 95–98. (in Russian)

4. Yakovlev A. N. Vvedeniye v veyvlet-preobrazovaniya [Introduction to wavelet transforms]. Novosibirsk: NGTU. 2003. 104 p. (in Russian)

5. Blatter K. Veyvlet-analiz. Osnovy teorii. [Wavelet analysis. Foundations of the theory]. Moscow: RITS Tekhnosfera. 2004. 280 р. (in Russian)

6. Mallat S. A Wavelet tour of signal processing. Second Edition. Academic Press. 1999. 620 p.

7. Obidin M. V., Serebrovskiy A. P. Veyvlety i adaptivnyy tresholding [Vavelets and adaptive trasholding]. Informatsionnyye protsessy. 2013, vol. 13, no 2, рр. 91–99. (in Russian)

8. Alsaidi M. Altaher, Mohd T. Ismail. A Comparison of Some Thresholding Selection Methods for Wavelet Regression // World Academy of Science. Engineering and Technology. 2010. № 62. P. 119–125.

9. D’yakonov V., Abramenkova I. MATLAB. Obrabotka signalov i izobrazheniy [MATLAB. Signal and image processing]. Spetsial’nyy spravochnik. St. Petersburg: Piter. 2002. 608 p. (in Russian)

10. Lazareva A. G. Matematika veyvlet-preobrazovaniy [Wavelet transform mathematics]. Molodoy uchenyy. 2009, no 3, pp. 30–34. (in Russian)

11. Vorob’yov V. I., Gribunin V. G. Teoriya i praktika veyvlet-preobrazovaniya [Theory and practice of wavelet transform]. St. Petersburg: Izdatel’stvo VUS. 1999, 204 p. (in Russian)

12. Nagornov O. V. Veyvlet-analiz v primerakh [Wavelet analysis in examples]. Uchebnoye posobiye. Moscow: NIYAU MIFI. 2010. 120 p. (in Russian)

13. Luisier F., Blu T., Unser M. A new SURE approach to Image denoising: interscale orthonormal wavelet thresholding // IEEE transactions on image processing. 2007. V. 38. № 5. P. 1323–1342.

14. Chang S. G., Yu B., Vetterli M. Adaptive Wavelet Thresholding for image Denoising and Compression // IEEE Trans. Image Processing. 2000. V. 9. № 9. P. 1532–1546.

15. Antoniadis A., Fryzlewicz P. Parametric modelling of thresholds across scales in wavelet regression // Biometrika. 2006. V. 93. № 2. P. 465–471.

16. Burnayev Ye. V. Primeneniye veyvlet-preobrazovaniya dlya analiza signalov [Application of wavelet transform for signal analysis]. Moscow. MFTI. 2007, 138 p. (in Russian)

17. Smolentsev N. K. Osnovy teorii veyvletov. Veyvlety v MATLAB [Fundamentals of the theory of wavelets. Wavelets in MATLAB]. Moscow. DMK Press. 2014, 628 p. (in Russian)

18. Birgé L., Massart P. From model selection to adaptive estimation / in D. Pollard (ed). Festchrift for L. Le Cam. Springer. 1997. P. 55–88.

19. Alekseyev K. A. Teoriya i praktika shumopodavleniya v zadache obrabotki seysmoakusticheskikh signalov [Theory and practice of noise reduction in the problem of processing seismoacoustic signals]. URL: https://nnspu.ru/Matlab_Ru/wavelet/book5/index.asp.htm (accessed 22. 12. 2020)

20. Donoho D. L. De-Noising by Soft Thresholding // IEEE Transactions on Information Theory. 1995. V. 41. № 3. P. 613–627.


Review

For citations:


Moskovsky S.B., Sergeev A.N., Sidorova E.I., Marudov А.A. Software Implementation of the Algorithm for Processing Wavelet Coefficients in Problems of Experimental Data Analysis. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(1):77-84. (In Russ.) https://doi.org/10.1134/S2304487X21010120

Views: 160


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)