Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Parametric Identification of the Heat Flow Incident on the Mirror Elements of Space Observatories

https://doi.org/10.56304/S2304487X22020031

Abstract

A method for parametric determination of the incident thermal specific load on the mirror elements of space systems has been proposed. This problem is solved as a problem of finding an extremum between the theoretical and experimental temperature fields in the places where temperature sensors are installed. First, it is necessary to solve the “direct” problem of heat exchange for the test object and set the basic functions describing the shape of the incident thermal flow. The heat exchange process is accompanied by a one-dimensional radiant-conductive heat transfer inside the material. Consequently, in addition to solving the heat equation, it is necessary to solve the equation of radiation transfer inside the mirror element. As boundary conditions, the equality of heat flows is applied: the resulting heat flow on the one hand and zero heat flows to the lower base of the mirror on the other hand since all surfaces except one are thermally insulated for modeling one-dimensional heating. Next, the standard deviation between the experimental and theoretical temperature fields is compiled and the resulting functional is minimized. Regularization is used to overcome the inaccuracy due to the inaccuracy of the source data. The iterative regularization method where the regularizing parameter is the iteration number is chosen for the regularization procedure. The conjugate gradient method, as the most accurate method of the first order of convergence is chosen as the optimization algorithm. The results obtained can be used to evaluate the boundary conditions of products for a wide temperature range.

About the Author

N. O. Borshchev
Astrospace Centre, Lebedev Physical Institute, Russian Academy of Sciences
Russian Federation

Moscow, 119991



References

1. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata. [Calculation of spacecraft heat transfer]. Moscow, Mashinostroenie Publ., 1979.

2. Krein S.G., Prozorovskaya O.I. Analiticheskie polugruppy i nekorrektnye zadachi dlya evolyucionnyh uravnenij. [Analytical semigroups and ill-posed problems for evolutionary equations]. Reports of the Academy of Sciences of the USSR, 1960, vol. 133, no. 2, pp. 277–280.

3. Bassistov Yu.A., Yanovsky Yu.G. Nekorrektnye zadachi v mekhanike (reologii) vyazkouprugih sred i ih regulyari .[Incorrect problems in mechanics (rheology) of viscoelastic media and their regularization]. Mechanics of composite materials and structures, 2010. vol. 16, no. 1, pp. 117–143.

4. Bakushinsky A.B., Kokurin M.Yu., Kokurin M.M.Pryamye i obratnye teoremy dlya iteracionnyh metodov resheniya neregulyarnyh operatornyh uravnenij i raznostnyh metodov resheniya nekorrektnyh zadach Koshi. [Direct and inverse theorems for iterative methods for solving irregular operator equations and difference methods for solving ill-posed Cauchy problems].Journal of Computational Mathematics and Mathematical Physic, 2020, vol. 60, no. 6, pp. 939–962.

5. Fanov V.V., Martynov M.B., Karchaev H.Zh. Aircraftof S.A. Lavochkin NPO (to the 80th anniversary of the enterprise). Bulletin of NPO named after S.A., Lavochkin, 2017, no. 2/36, pp. 5–16.

6. Bloch A.G., Zhuravlev Yu.A., Ryzhkov L. N. Teploobmen izlucheniem. [Heat exchange by radiation]. Moscow, Energoatomizdat Publ., 1991.

7. Tulin D.V., Finchenko V.S. Theoretical and experimental methods of designing systems for ensuring the thermal regime of space apparatuses. Moscow, MAI-PRINT, 2014, vol. 3, pp. 1320–1437.

8. Tsaplin S.V., Bolychev S.A., Romanov A.E. Teploobmen v kosmose. [Heat exchange in space]. Samara University Publ., 2013, 53 p.

9. Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. Ekstremal’nye metody resheniya nekorrektnyh zadach. [Extreme methods for solving incorrect problems]. Moscow, Nauka. Gl. ed. phys.-mat. lit. Publ., 1988, 288 p.

10. Alifanov O.M. Obratnye zadachi teploobmena.[Inverse problems of heat transfer. Moscow]. Mechanical Engineering Publ., 1988, 280 p.

11. Formalev V.F. Teploperenos v anizotropnyh tverdyh telah. [Heat transfer in anisotropic solids]. Moscow, Fizmatlit Publ., 2015, 238 p.

12. Vasin V.V. Modificirovannyj metod naiskorejshegospuska dlya nelinejnyh regulyarnyh operatornyh uravnenij. [Modified steepest descent method for nonlinear regular operator equations]. Reports of the Academy of Sciences, 2015, vol. 462. no. 3, pp. 264.

13. Golichev I.I. Modificirovannyj gradientnyj metod naiskorejshego spuska resheniya neleniarizovannoj zadachi dlya nestacionarnyh uravnenij Nav’e–Stoksa. [Modified gradient method of the steepest descent of the solution of the non-leniarized problem for non-stationary Navier–Stokes equations]. Ufa Mathematical Journal, 2013, vol. 5, no. 4, pp. 60–76.

14. Formalev V.F., Reviznikov D.L. Chislennye metody. [Numerical methods]. Moscow, Fizmatlit Publ., 2004, 400 p.

15. Formalev V.F. Analiz dvumernyh temperaturnyh polej vanizotropnyh telah s uchetom podvizhnyh granic i bol’shoj stepeni anizotropii. [Analysis of two-dimensional temperature fields in anisotropic bodies taking into account moving boundaries and a large degree of anisotropy]. Thermophysics of high temperatures, 1990, vol. 28, no. 4, pp. 715–721.

16. Formalev V.F. Identifikaciya dvumernyh teplovyh potokov v anizotropnyh telah slozhnoj formy [Identification of two-dimensional heat flows in anisotropic bodies of complex shape]. Engineering and Physics journal, 1989, vol. 56, no. 3, pp. 382–386.

17. Formalev V.F., Kolesnik S.A. Analiticheskoe reshenievtoroj nachal’no-kraevoj zadachi anizotropnoj teploprovodnosti. [Analytical solution of the second initial boundary value problem of anisotropic thermal conductivity]. Mathematical modeling. 2003, vol. 15, no. 6, pp. 107–110.

18. Borshchev N.O. Metody issledovaniya teplovoj modeli mnogorazovogo elementa konstrukcii spuskaemogo kosmicheskogo apparata s uchetom svojstva anizotropii. Diss. kand. tekhn. nauk. [Methods for studying the thermal model of a reusable structural element of a descent space vehicle, taking into account the property of anisotropy. Diss. of a cand. of techn. Sciences]. Moscow, 2021, 154 p.


Review

For citations:


Borshchev N.O. Parametric Identification of the Heat Flow Incident on the Mirror Elements of Space Observatories. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(2):101–108. (In Russ.) https://doi.org/10.56304/S2304487X22020031

Views: 107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)