Development of a Device for the Transverse Profile Measurement of Hadron Beams
https://doi.org/10.56304/S2304487X22020043
Abstract
The clinical application of medical proton and ion accelerators requires more accurate and reliable devices for diagnostics of radiation parameters. For the radiotherapy procedures by high-energy beams of heavy charged particles, high-precision monitoring systems are needed to determine the intensity, position, and spatial distribution of the therapeutic beam in real time with minimum particle flux disturbance. Existing measuring systems do not meet all the necessary requirements. In this connection, it becomes relevant to develop a detecting device for recording the spatial and energy characteristics of proton and ion beams. In this work, the detecting device is developed to measure the transverse distribution of the intensity of hadron beams. The developed detector should allow the implementation of the multi-angle scanning method, which was proposed in our previous works and was successfully tested on X-ray and electron beams. As a result, a scheme of the developed detector has been proposed and the corresponding detecting device has been assembled. The device working medium is a thin scintillation fiber suitable for detecting high-energy hadron beams. The developed detector has been tested on proton and carbon ion beams. The horizontal profiles of the proton and ion beams for different energies measured using the developed and film detectors have been compared. As a result, it has been shown that the developed detector is suitable for measuring the transverse intensity distribution of high-energy proton and ion beams.
About the Authors
A. A. GrigorievaRussian Federation
Tomsk, 634050
A. A. Bulavskaya
Russian Federation
Tomsk, 634050
E. A. Bushmina
Russian Federation
Tomsk, 634050
I. A. Miloichikova
Russian Federation
Tomsk, 634050
Tomsk, 634009
S. G. Stuchebrovс
Russian Federation
Tomsk, 634050
References
1. Particle therapy facilities in clinical operation. Available at: https://www.ptcog.ch/index.php/facilities-in-operation. (accessed 25.07.2022)
2. Karger C.P., Jäkel O., Palman, H., Kanai T. Dosimetryfor ion beam radiotherapy. Physics in Medicine & Biology, 2010, vol. 55, no. 21, p. R193.
3. Castriconi R., Ciocca M., Mirandola A., Sini C., Broggi S., Schwarz M., Russo P. Dose-response of EBT3 radiochromic films to proton and carbon ion clinical beams. Physics in Medicine & Biology, 2016. vol. 62, no. 2, p. 377.
4. Actis O., Meer D., König S. Precise on-line positionmeasurement for particle therapy. Journal of Instrumentation, 2014, vol. 9, no. 12, p. C12037.
5. Xu Z., Mao R., Duan L., She Q., Hu Z., Li H.,Zhang J. A new multi-strip ionization chamber used as online beam monitor for heavy ion therapy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, vol. 729, pp. 895–899.
6. Basile E., Carloni A., Castelluccio D.M., Cisbani E.,Colilli S., De Angelis G., Vacca G. An online proton beam monitor for cancer therapy based on ionization chambers with micro pattern readout. Journal of Instrumentation, 2012, vol. 7. no. 03, pp. C03020.
7. Giordanengo S., Donetti M., Garella M.A., Marchetto F., Alampi G., Ansarinejad A., Cirio R. Design and characterization of the beam monitor detectors of the Italian National Center of Oncological Hadrontherapy (CNAO). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, vol. 698, pp. 202–207.
8. Vasil’ev S.E., Vishnevskij A.V., Kadykov M.G.,Makan’kin A.M., Tyutyunnikov S.I., Shurygin A.A. Razrabotka sistemy monitorirovaniya formy, polozheniya i intensivnosti vyvedennogo puchka relyativistskih ionov uskoritel’nogo kompleksa NuklotronM OIYAI [Development of a monitoring system for the shape, position and intensity of the extracted beam of relativistic ions of the accelerator complex NuclotronM JINR]. Pis’ma v ECHAYA, 2014, vol. 11, no. 6, p. 190. (In Russian)
9. Baldin A.A., Berlev A.I., Vasil’ev S.E., Vishnevskij A.V.,Vladimirova H.M., Kudashkin I.V., Tyutyunnikova S.I. Monitorirovanie vyvedennyh puchkov uskoritel’nogo kompleksa nuklotron dlya eksperimentov “Energiya+ transmutaciya” [Monitoring of the extracted beams of the Nuclotron accelerator complex for the “Energy + transmutation” experiments]. ІІ. Pis’ma v ECHAYA, 2015, vol. 13, pp. 334–344. (In Russian)
10. Furukawa T., Saotome N., Inaniwa T., Sato S., Noda K.,Kanai T. Delivery verification using 3D dose reconstruction based on fluorescence measurement in a carbon beam scanning irradiation system. Medical physics, 2008, vol. 35, no. 6, Part1, pp. 2235–2242.
11. Bulavskaya A.A., Cherepennikov Y.M., Chakhlov S.V.,Grigorieva A.A., Miloichikova I.A., Vukolov A.V., Stuchebrov S.G. Measurement of electron beam transverse flux density distribution. IOP Conference: Series Materials Science and Engineering, 14th International Forum on Strategic Technology (IFOST 2019), Tomsk, 2021, vol. 1019, no. 1, pp. 012043.
12. Bulavskaya A.A. Razrabotka i primenenie metoda mnogouglovogo skanirovaniya dlya registracii prostranstvennogo energeticheskogo raspredeleniya ioniziruyushchego izlucheniya v poperechnom sechenii puchka. Diss. kand. fiz. mat. nauk. [Development and application of the multi-angle scanning method for recording the spatial energy distribution of ionizing radiation in the beam cross section. Diss. Cand. of Phys.-Math. Sciences]. Tomsk, 2020. 118 p.
13. Bulavskaya A.A., Cherepennikov Y.M., Grigorieva A.A.,Miloichikova I.A., Stuchebrov S.G. Multiangle scanning for measuring radiation beam profiles with a typical size of 10 millimetres – Proof-of-principle experiments. Journal of Instrumentation, 2022, vol. 17, no. 07, pp. T07004.
14. Beaulieu L., Goulet M., Archambault L., Beddar S.Current status of scintillation dosimetry for megavoltage beams. Journal of Physics: Conference Series. – IOP Publishing, 2013, vol. 444, no. 1, p. 012013.
15. Guillot M., Gingras L., Archambault L., Beddar S.,Beaulieu L. Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: a comparison study of calibration procedures and validation in Cerenkov light dominated situations. Medical physics, 2011, vol. 38, no. 4, pp. 2140–2150.
16. Saint-Gobain Crystals BCF-20. Available at: https://www.crystals.saint-gobain.com/radiation-detection-scintillators/fibers (accessed 25.07.2022)
17. Silicon Photomultiplier Module PE3315-WB-TIA-TP. Available at: https://www.ketek.net/wp-content/uploads/KETEK-PE3315-WB-TIA-TP.pdf (accessed 25.07.2022)
18. USB oscillograf DSO-6104BD USB oscilloscope DSO6104BD. Available at: https://www.hantek.ru/products/dso6104bd.html (accessed 25.07.2022)
19. Natural’nyj PETG plastik Bestfilament dlya 3D-printerov 0.5 kg (1,75 mm) (1,75 мм) [Natural PETG plastic Bestfilament for 3D printers 0.5 kg (1.75 mm)]. Available at: https://bestfilament.ru/petg-plastik-bestfilament-dlya-3d-printerov-1-kg-175-mm/
20. Original Prusa i3 mk3s. Available at: https://www.prusa3d.com/category/original-prusa-i3-mk3s/ (accessed 25.07.2022)
21. Standa 8MT50-200 Motorized Translation Stages. Available at: https://www.standa.lt/products/catalog/motorised_positioners?item=308 (accessed 25.07.2022)
22. Battaglia M.C., Espino J.M., Gallardo M.I., Lallena A.M., Fernandez B., Cortés-Giraldo M.A., Schardt D. EBT3 film calibration in the Bragg peak region for proton beams below 5 MeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, vol. 444, pp. 117–124.
23. El Barouky J., Fournier-Bidoz N., Mazal A., Fares G.,Rosenwald J. C. Practical use of Gafchromic EBT films in electron beams for in-phantom dose distribution measurements and monitor units verification. Physica Medica: European Journal of Medical Physics, 2011, vol. 27, no. 2, pp. 81–88.
24. Mathot M., Sobczak S., Hoornaert M.T. GafChromicfilm dosimetry: four years experience using FilmQA Pro software and Epson flatbed scanners. Physica Medica: European Journal of Medical Physics, 2014, vol. 30, no. 8, pp. 871–877.
25. Devic S., Seuntjens J., Sham E., Podgorsak E.B.,Schmidtlein C.R., Kirov A.S., Soares C.G. Precise radiochromic film dosimetry using a flatbed document scanner. Medical physics, 2005, vol. 32, no. 7, Part 1, pp. 2245–2253.
26. Epson Perfection V850 Pro. Available at: https://epson.ru/catalog/scanners/epson-perfection-v850-pro/ (accessed: 25.07.2022 г.)
27. MATLAB. Available at: https://www.mathworks.com/products/matlab.html (accessed: 25.07.2022 г.)
Review
For citations:
Grigorieva A.A., Bulavskaya A.A., Bushmina E.A., Miloichikova I.A., Stuchebrovс S.G. Development of a Device for the Transverse Profile Measurement of Hadron Beams. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(2):170–177. (In Russ.) https://doi.org/10.56304/S2304487X22020043