Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Алгоритм построения первых интегралов одного класса нелинейных дифференциальных уравнений второго порядка

https://doi.org/10.56304/S2304487X22020080

Аннотация

Рассматривается один из классов нелинейных обыкновенных дифференциальных уравнений второго порядка. Предлагается алгоритм построения первых интегралов рассматриваемого класса уравнений. Для поиска аналитических решений уравнений данного класса, как правило, используются специальные подходы типа метода простейших уравнений. Предлагаемый алгоритм позволяет в ряде случаев находить общие решения нелинейных дифференциальных уравнений. Применение алгоритма иллюстрируется на примере комплексного уравненния Гинзбурга–Ландау, решение которого ищется используя переменные бегущей волны. Показано, что нелинейное обыкновенное дифференциальное уравение второго порядка достаточно сложного вида, с помощью предлагаемого алгоритма можно свести к дифференцильному уравнению первого порядка, решение которого в общем виде можно представить в виде квадратуры. При нулевых значениях постоянных интегрирования, точные решения уравнения Гинзбурга–Ландау получены в виде аналитических выражениий. Представлены точные решения уравнения Гинзбурга–Ландау в виде периодических и уединенных волн, которые выражаются через эллиптические и гиперболические функции.

Об авторе

Н. А. Кудряшов
Национальный исследовательский ядерный университет “МИФИ”
Россия

Москва, 115409



Список литературы

1. Malomed B.A. New findings for the old problem: Exact solutions for domainwalls in coupled real GinzburgLandau equations // Physics Letters A, 2022. V. 442. 127802.

2. Ekici M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures // Physics Letters A, 2020. V. 440. 128146.

3. Kudryashov N.A. First integrals and general solution of the complex Ginzburg-Landau equation // Applied mathemaics and computation, 2020. V. 386. 125407.

4. Biswas A., Kara A.H., Sun Y., Zhou Q., Yildirim Y., Alshehri H.M., Belic M.R. Conservation laws for purecubic optical solitons with complex Ginzburg–Landau equation having several refractiveindex structures // Results in Physics, 2021. V. 31. 104901.

5. Kai Y., Yin Z. Asymptotican alysis to domain walls between traveling wave smodeled by real coupled Ginzburg-Landau equations // Chaos, Solitons and Fractals, 2021. V. 152. 111266.

6. Malomed B.A. Past and Present Trends in the Development of the Pattern-Formation Theory: Domain Walls and Quasicrystals // Physics, 2021. V. 3. P. 1014–1045.

7. Zayed E.M.E., Gepreel K.A., El-Horbaty M., Biswas A., Yildirim Y. and Alshehri H.M. Highly dispersive optical solitons with complex Ginzburg-Landau equation having six nonlinear forms, Mathematics, 2021. V. 9 (24). P. 3270.

8. Biswas A., Berkemeyer T., Khan S., Moraru L., Yildirim Y., Alshehri H.M. Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation // Mathematics, 2022. V. 10 (6). P. 987.

9. Biswas A., Yildirim Y., Ekici M., Guggilla P., Khan S., Gonzalez-Gaxiola O., Alzahrani A.K., Belic M.R. Cubicquartic optical soliton pertubation with complex Ginzburg-Landau equation // Journal of Applied Science and Engineering (Taiwan), 2021. V. 24 (6). P. 937– 1004.

10. Zayed E.M.E., Alngar M.E.M., El-Horbaty M., Biswas A., Alshomrani A.S., Ekici M., Yildirim Y., Belic M.R. Optical solitons with complex Ginzburg–Landau equation having a plethora of nonlinear forms with a couple of improved integration norms // Optik, 2020. V. 207. P. 163804.

11. Samir Islam, Badra Niveen, Ahmed Hamdy M., Arnous Ahmed H. Solitons in birefringent fibers for CGL equation with Hamiltonian perturbations and Kerr law nonlinearity using modified extended direct algebraic method // Commun Nonlinear Sci Numer Simulat, 2021. V. 102. 105945.

12. Das A., Biswas A., Ekici M., Zhou Q., Alshomrani A.S., Belic M.R. Optical solitons with complex GinzburgLandau equation for two nonlinear forms using F-expansion, Chinese Journal of Physics, 2019. V. 61. P. 255–261.

13. Shi Y., Dai Z., Li D. Application of Exp-function method for 2D cubic-quintic Ginzburg–Landau equation, Applied Mathematics and Computation, 2009. V. 210. P. 269–275.

14. Li W., Ma G.,Yu W., Zhang Y., Liu M., Yang C., Liu W. Soliton structures in the (1+1)-dimensional Ginzburg–Landau equation with a parity-time-symmetric potential in ultrafast optics. Chinese Physics B, 2018. V. 27. 030504.

15. Zayed E.M.E., Alurrfi K.A.E. New extended auxiliary equation method and its applications to nonlinear Schrodinger-type equations // Optik, 2016. V. 127. P. 9131–9151.

16. Abdou M.A., Soliman A.A., Biswas A., Ekici M., ZhouQ., Moshokoa S.P. Dark-singular combo optical solitons with fractional complex Ginzburg–Landau equation // Optik, 2018. V. 171. P. 463–467.

17. Biswas A. Chirp-free bright optical solitons and conservation laws for complex Ginzburg–Landau equation with three nonlinear forms // Optik, 2018. V. 174. P. 207–215.

18. Kudryashov N.A. A generalized model for description of propagation pulses in optical fiber // Optik, 2019. V. 189. P. 42–52.

19. Arnous A.H., Biswas A., Ekici M., Alzahrani A.K., Belic M.R. Optical solitons and conservation laws of Kudryashov’s equation with improved modified extended tanh-function, Optik, 2021. V. 225. P. 165406.

20. Zayed E.M.E., Alngar M.E.M. Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms // Mathematical Methods in the Applied Sciences, 2021. V. 44 (1). P. 315–324.

21. Biswas A., Asma M., Guggilla P., Mullick L., Moraru L., Ekici M., Alzahrani A.K., Belic M.R. Optical soliton perturbation with Kudryashov’s equationby semi-inverse variational principle // Physics Letters, Section A: General,Atomic and Solid State Physics, 2020. V. 384. Is. 33. P. 126830.

22. Biswas A., Sonmezoglu A., Ekici M., Alzahrani A.K., Belic M.R. Cubic-Quartic Optical Solitons with Differential Group Delay for Kudryashov’s Model by Extended Trial Function // Journal of Communications Technologyand Electronics, 2020. V. 65. is. 12. P. 1384– 1398.

23. Ekici M. Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov’s quintuple powerlaw coupled with dual form of non-local refractive index structure // Chaos, Solitions and Fractals, 2022. V. 159. P. 112172.

24. Biswas A., Ekici M., Sonmezoglu A. Stationary optical solitons with Kudryashov’s quintuple power-law of refractive index having nonlinear chromatic dispersion // Physics Letters, Section A: General, Atomic and Solid State Physics, 2022. V. 426. P. 127885.

25. Ekici M. Optical solitons with Kudryashov’s quintuple power law coupled with dual form of non-local law of refractive index with extended Jacobi’s elliptic function // Optical and Quantum Electronics, 2022. V. 54. P. 279.

26. Kudryashov N.A. The generalized Duffing oscillator. Communications inNonlinear Science and Numerical Simulation, 2021. V. 93. P. 105526.

27. Kudryashov N.A. Exact solutions of the equation for surface waves in aconvecting fluid, Applied Mathematics and Computation, 2019. V. 344–345. P. 97–106.

28. Kudryashov N.A. Solitary wave solutions of hierarchy with non-local nonlinearity // Applied Mathematics Letters, 2020. V. 103. P. 106155.

29. Kudryashov N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schr odinger equations,̈ Applied Mathematics and Computation, 2020. V. 371. P. 124972.

30. Kudryashov N.A. Implicit Solitary Waves for One of the Generalized Nonlinear Schr odinger Equations. Math-̈ ematics, 2021. V. 9. is. 23. P. 3024.

31. Kudryashov N.A. Method for finding optical solitons of generalized nonlinear Schrödinger equations, Optik, 2022. V. 261. P. 169163.

32. Alotaibi H. Traveling wave solutions to the nonlinear evolution equation using expansion method and addendum to Kudryashov’s method // Symmetry, 2021, V. 13. Is. 11. P. 2126.

33. Kaplan M., Akbulut A. The analysis of the soliton-type solutions of conformable equations by using generalized Kudryashov method // Optical and Quantum Electronics, 2021. V. 53. Is. 9. P. 498.

34. Kudryashov N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index // Applied Mathematics Letters, 2022. V. 128. 107888.

35. Rahman Z., Ali M.Z., Roshid H.-O. Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method // Chinese Physics B, 2021. V. 30. Is. 5. 050202.

36. Kaewta S., Sirisubtawee S., Sungnul S. Application of the exp-function and generalized Kudryashov method for obtaining new exactsolutions of certain nonlinear conformable time partial integro-differential equations // Computation, 2021. V. 9. Is. 5. P. 5.


Рецензия

Для цитирования:


Кудряшов Н.А. Алгоритм построения первых интегралов одного класса нелинейных дифференциальных уравнений второго порядка. Вестник НИЯУ МИФИ. 2022;11(2):109–116. https://doi.org/10.56304/S2304487X22020080

For citation:


Kudryashov N.A. Algorithm for Constructing the First Integrals for One Class of Nonlinear Differential Equations of the Second Order. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(2):109–116. (In Russ.) https://doi.org/10.56304/S2304487X22020080

Просмотров: 97


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)