Optical Erasing of Dose Information in TLD-580N Thermoluminescent Detectors
https://doi.org/10.56304/S2304487X22020134
Abstract
The study of thermoluminescence and photoluminescence spectra allows us to propose a thermoluminescence mechanism for MgB4O7:Dy,Na, which is similar to that previously known for MgB4O7:Tm. Here, the release of holes from the hole trapping center gives rise to the main working peak of thermoluminescence. The fading of dose information in MgB4O7:Dy,Na thermoluminescent detectors (TLD-580N) exposed to light (365, 395, and 470 nm) is also studied. The thermoluminescence peaks diminish without any pronounced optically stimulated luminescence. According to the proposed model, light releases electrons, which recombine with holes in hole traps, after which thermoluminescence becomes impossible.
About the Authors
I. A. ZakharchukRussian Federation
Moscow, 105005
A. S. Selyukov
Russian Federation
Moscow, 105005
Moscow, 107023
Moscow, 117485
M. I. Danilkin
Russian Federation
Moscow, 117485
Dolgoprudny, Moscow region, 141701
O. V. Ivkina
Russian Federation
Moscow, 123060
I. V. Mosyagina
Russian Federation
Moscow, 123060
References
1. Patra G.D., Singh S.G., Singh A.K., Tyagi M., Desai D.G., Tiwari B., Sen S., Gadkari S.C. Silver doped lithium tetraborate (Li2B4O7) single crystals as efficient dosimeter material with sub-micro-Gy sensitivity. Journal of Luminescence, 2015, vol. 157, pp. 333–337. https://doi.org/10.1016/j.jlumin.2014.09.017
2. Cano A., Gonzalez P.R., Furetta C. Further studies ofsome TL characteristics of MgB4O7: Dy, Na phosphor. Modern Physics Letters B, 2008, vol. 22, no. 21, pp. 1997–2006. doi: 10.1142/S0217984908016674
3. Jaek I., Kerikmäe M., Lust A. Optically stimulated luminescence of some thermoluminescent detectors as an indicator of absorbed radiation dose. Radiation protection dosimetry, 2002, Т. 100, no. 1–4, pp. 459–461. https://doi.org/10.1093/oxfordjournals.rpd.a005914
4. Danilkin M., Jaek I., Kerikmäe M., Lust A., Mändar H.,Pung L., Ratas A., Seeman V., Klimonsky S., Kuznetsov V. Storage mechanism and OSL-readout possibility of Li2B4O7: Mn (TLD-800). Radiation Measurements, 2010, Т. 45, no. 3–6, pp. 562–565. doi: 10.1016/j.radmeas.2010.01.045
5. Selyukov A.S., Primenko A.E., Gardenina T.A.,Danilkin M.I. Thermally and Optically Stimulated Luminescence Kinetics with Impeded Carrier Transport. Bulletin of the Lebedev Physics Institute, 2020, vol. 47, no. 11, pp. 37–45. https://doi.org/10.3103/S1068335620110093
6. Selvam T.P., Keshavkumar B. Monte Carlo investigation of energy response of various detector materials in and brachytherapy dosimetry. Journal of Applied Clinical Medical Physics, 2010, vol. 11, no. 4, pp. 70–82. https://doi.org/10.1120/jacmp.v11i4.3282
7. Kumar M.V.V., Jamalaiah B.C., Gopal K.R., ReddyR.R. Optical absorption and fluorescence studies of Dy3+-doped lead telluroborate glasses. Journal of luminescence, 2012, vol. 132, no. 1, pp. 86–90. https://doi.org/10.1016/j.jlumin.2011.07.021
8. Porwal N.K., Kadam R.M., Seshagiri T.K., Natarajan V.,Dhobale A.R., Page A.G. EPR and TSL studies on MgB4O7 doped with Tm: role of BO32– in TSL glow peak at 470 K. Radiation measurements, 2005, vol. 40, no. 1, pp. 69–75. https://doi.org/10.1016/j.radmeas.2005.04.007
9. Oliveira T.M., Lima A.F., Brik M.G., Souza S.O., Lalic M.V. Electronic structure and optical properties of magnesium tetraborate: An ab initio study. Computational Materials Science, 2016, vol. 124, pp. 1–7. https://doi.org/10.1016/j.commatsci.2016.07.007
Review
For citations:
Zakharchuk I.A., Selyukov A.S., Danilkin M.I., Ivkina O.V., Mosyagina I.V. Optical Erasing of Dose Information in TLD-580N Thermoluminescent Detectors. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(2):164–169. (In Russ.) https://doi.org/10.56304/S2304487X22020134